【題目】用小立方塊搭成的幾何體.從正面看和從上面看的形狀如圖所示,問組成這樣的幾何體最多需要多少個立方塊,最少需要多少個立方塊?請畫出最少和最多時從左面看到的形狀.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,3秒后,兩點相距15個單位長度.已知點B的速度是點A的速度的4倍(速度單位:單位長度/秒).
(1)求出點A、點B運動的速度,并在數(shù)軸上標出A、B兩點從原點出發(fā)運動3秒時的位置;
(2)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時,原點恰好處在點A、點B的正中間?
(3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A、B、C均落在格點上.將線段AB繞點B順時針旋轉90°,得線段A′B,點A的對應點為A′,連接AA′交線段BC于點D.
(Ⅰ)作出旋轉后的圖形;
(Ⅱ) = .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一正方形ABCD中,E為對角線AC上一點,連接EB、ED.
(1)求證:△BEC≌△DEC;
(2)延長BE交AD于點F,若∠DEB=150°.求∠AFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平整的地面上,由若干個完全相同的棱長為 10 cm 的小正方體堆成一個幾何體,如圖 所示.
(1)這個幾何體由多少個小正方體組成?請畫出這個幾何體的三視圖.
(2)如果在這個幾何體的表面(不包括底面)噴上黃色的漆,則在所有的小正方體中,有多少個只有一個面是黃色?有多少個只有兩個面是黃色?有多少個只有三個面是黃色?
(3)假設現(xiàn)在你手里還有一些相同的小正方體,保持這個幾何體的主視圖、俯視圖形狀 不變,最多可以再添加幾個小正方體?這時如果要重新給這個幾何體表面(不包括底面) 噴上紅色的漆,需要噴漆的面積比原幾何體增加了還是減少了?增加或減少的面積是 多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列單項式:,,,,,,,寫出第個單項式,為了解決這個問題,特提供下面的解題思路.
(1)這組單項式的系數(shù)依次為多少?系數(shù)符號的規(guī)律是什么?系數(shù)絕對值規(guī)律是什么?
(2)這組單項式的次數(shù)的規(guī)律是什么?
(3)根據(jù)上面的歸納,你可以猜想出第個單項式是什么?
(4)請你根據(jù)猜想,寫出第個,第個單項式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年1月25日,上海地區(qū)下了一場大雪.這天早上王大爺去買菜,他先去了超市,發(fā)現(xiàn)蔬菜普遍漲價了,青菜、花菜和大白菜這兩天的價格如下表.王大爺覺得超市的菜不夠新鮮,所以他又去了菜市場,他花了30元買了一些新鮮菠菜,他跟賣菜阿姨說:“你今天的菠菜比昨天漲了5元/斤!辟u菜阿姨說:“下雪天從地里弄菜不容易啊,所以你花這些錢要比昨天少買1斤了!蓖醮鬆敾卮鸬溃骸皯摰模銈円舱娴男量。”
青菜 | 花菜 | 大白菜 | |
1月24日 | 2元/斤 | 5元/斤 | 1元/斤 |
1月25日 | 2.5元/斤 | 7元/斤 | 1.5元/斤 |
(1)請問超市三種蔬菜中哪種漲幅最大?并計算其漲幅;
(2)請你根據(jù)王大爺和賣菜阿姨的對話,來算算,這天王大爺買了幾斤菠菜?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中裝有4個分別標有數(shù)字﹣1,﹣2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機摸出一個小球記下數(shù)字為x;小穎在剩下的3個小球中隨機摸出一個小球記下數(shù)字為y.
(1)小紅摸出標有數(shù)字3的小球的概率是 ;
(2)請用列表法或畫樹狀圖的方法表示出由x,y確定的點P(x,y)所有可能的結果,并求出點P(x,y)落在第三象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,CD⊥AB,∠DEB=∠ACB,∠1+∠2=180°,試判斷FG與AB的位置關系,并說明理由.請在下劃線內補全解題過程或依據(jù).
解:FG⊥AB,理由如下:
∵∠DEB=∠ACB (已知)
∴AC∥________ (__________________)
∴∠1=∠3(_______________________)
∵∠1+∠2=180°(已知)
∴∠3+∠2=_________(等量代換)
∴FG∥________ (_________________)
∴∠FGA=∠________(_____________)
∵CD⊥AB(已知)
∴∠CDA=90°
∴∠________=90°(等量代換)
∴FG⊥AB(_____________________)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com