【題目】如圖,點是反比例函數(shù)與一次函數(shù)在軸上方的圖象的交點,過點作軸,垂足是點,.一次函數(shù)的圖象與軸的正半軸交于點.
(1)求點的坐標(biāo);
(2)若梯形的面積是3,求一次函數(shù)的解析式;
(3)結(jié)合這兩個函數(shù)的完整圖象:當(dāng)時,寫出的取值范圍.
【答案】(1)點的坐標(biāo)為;(2);(3)或.
【解析】
(1)點A在反比例函數(shù)上,軸,,求坐標(biāo);
(2)梯形面積,求出B點坐標(biāo),將點代入 即可;
(3)結(jié)合圖象直接可求解;
解:(1)∵點在的圖像上,軸,.
∴,
∴
∴點的坐標(biāo)為;
(2)∵梯形的面積是3,
∴,
解得,
∴點的坐標(biāo)為,
把點與代入
得
解得:,.
∴一次函數(shù)的解析式為.
(3)由題意可知,作出函數(shù)和函數(shù)圖像如下圖所示:
設(shè)函數(shù)和函數(shù)的另一個交點為E,
聯(lián)立 ,得
點E的坐標(biāo)為
即 的函數(shù)圖像要在的函數(shù)圖像上面,
可將圖像分割成如下圖所示:
由圖像可知所對應(yīng)的自變量的取值范圍為:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文明交流互鑒是推動人類文明進(jìn)步和世界和平發(fā)展的重要動力.2019年5月“亞洲文明對話大會”在北京成功舉辦,引起了世界人民的極大關(guān)注.某市一研究機構(gòu)為了了解10~60歲年齡段市民對本次大會的關(guān)注程度,隨機選取了100名年齡在該范圍內(nèi)的市民進(jìn)行了調(diào)查,并將收集到的數(shù)據(jù)制成了尚不完整的頻數(shù)分布表、頻數(shù)分布直方圖和扇形統(tǒng)計圖,如下所示:
組別 | 年齡段 | 頻數(shù)(人數(shù)) |
第1組 | 5 | |
第2組 | ||
第3組 | 35 | |
第4組 | 20 | |
第5組 | 15 |
(1)請直接寫出 , ,第3組人數(shù)在扇形統(tǒng)計圖中所對應(yīng)的圓心角是 度.
(2)請補全上面的頻數(shù)分布直方圖;
(3)假設(shè)該市現(xiàn)有10~60歲的市民300萬人,問40~50歲年齡段的關(guān)注本次大會的人數(shù)約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線: 與軸、軸分別交于點B、C,經(jīng)過B、C兩點的拋物線與軸的另一個交點為A.
(1)求該拋物線的解析式;
(2)若點P在直線下方的拋物線上,過點P作PD∥軸交于點D,PE∥軸交于點E,
求PD+PE的最大值;
(3)設(shè)F為直線上的點,以A、B、P、F為頂點的四邊形能否構(gòu)成平行四邊形?若能,求出點F的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過兩點A(﹣3,0),B(0,3),且其對稱軸為直線x=﹣1.
(1)求此拋物線的解析式.
(2)若點Q是對稱軸上一動點,當(dāng)OQ+BQ最小時,求點Q的坐標(biāo).
(3)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求△PAB面積的最大值,并求出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AM和BN是⊙O的兩條切線,E為⊙O上一點,過點E作直線DC分別交AM,BN于點D,C,且CB=CE.
(1)求證:DA=DE;
(2)若AB=6,CD=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分?jǐn)噭颍?/span>
(1)“從中任意抽取1個球不是紅球就是白球”是 事件,“從中任意抽取1個球是黑球”是 事件;
(2)從中任意抽取1個球恰好是紅球的概率是 ;
(3)學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.甲、乙兩名同學(xué)被選中的概率各是多少?你認(rèn)為這個規(guī)則公平嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在東西方向的海岸線l上有長為300米的碼頭AB,在碼頭的最西端A處測得輪船M在它的北偏東45°方向上;同一時刻,在A點正東方向距離100米的C處測得輪船M在北偏東22°方向上.
(1)求輪船M到海岸線l的距離;(結(jié)果精確到0.01米)
(2)如果輪船M沿著南偏東30°的方向航行,那么該輪船能否行至碼頭AB靠岸?請說明理由.
(參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,≈1.732.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報名參加學(xué)校秋季運動會,有以下 5 個項目可供選擇:徑賽項目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項目:跳遠(yuǎn),跳高(分別用 T1、T2 表示).
(1)該同學(xué)從 5 個項目中任選一個,恰好是田賽項目的概率 P 為 ;
(2)該同學(xué)從 5 個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率 P1,利用列表法或樹狀圖加以說明;
(3)該同學(xué)從 5 個項目中任選兩個,則兩個項目都是徑賽項目的概率 P2 為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com