精英家教網 > 初中數學 > 題目詳情

【題目】某報社為了解市民對社會主義核心價值觀的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果為A非常了解”、“B了解”、“C基本了解三個等級,并根據調查結果制作了如下兩幅不完整的統(tǒng)計圖.

請根據圖中提供的信息,解答下列問題:

(1)本次調查的人數為   ;

(2)補全條形統(tǒng)計圖;

(3)若該市約有市民100萬人,請你根據抽樣調查的結果,估計該市大約有多少人對社會主義核心價值觀達到A非常了解的程度.

【答案】(1)500;(2)補圖見解析;(3)32萬人

【解析】

(1)根據統(tǒng)計圖中的數據可以求得本次調查的人數;

(2)根據(1)中的結果可以求得選擇A的人數,從而可以將條形統(tǒng)計圖補充完整;

(3)根據統(tǒng)計圖中的數據可以估計該市大約有多少人對“社會主義核心價值觀”達到“A非常了解”的程度.

1)本次調查的人數為:280÷56%=500,

故答案為:500;

(2)選擇A的學生有:500﹣280﹣60=160(人),

補全的條形統(tǒng)計圖,如圖所示;

(3)100×=32(萬人)

答:該市大約有32萬人對社會主義核心價值觀達到“A非常了解的程度.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】Rt△ABC中,∠ABC=90°,ABBC,EM分別為AB、AC上的點,連接CE,BM交于點G,且BMCE,OAC的中點,連接BOCE于點N

(1)如圖,若AB=6,2MOAM,求BM的長;

(2)如圖,連接OG、AG,若AGOG,求證:ACBG

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,AB是⊙O的直徑,點P在CA的延長線上,∠CAD=45°.

(1)若AB=4,求弧CD的長.

(2)若弧BC=弧AD,AD=AP. 求證:PD是⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F.若BC=4,CBD=30°,則DF的長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=5,E是AD上的一個動點.

(1)如圖1,連接BD,O是對角線BD的中點,連接OE.當OE=DE時,求AE的長;

(2)如圖2,連接BE,EC,過點E作EFEC交AB于點F,連接CF,與BE交于點G.當BE平分ABC時,求BG的長;

(3)如圖3,連接EC,點H在CD上,將矩形ABCD沿直線EH折疊,折疊后點D落在EC上的點D'處,過點D′作D′NAD于點N,與EH交于點M,且AE=1.

的值;

連接BE,D'MH與CBE是否相似?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=﹣x2+2kxk2+k+3(k為常數)的頂點縱坐標為4.

(1)求k的值;

(2)設拋物線與直線y=﹣x﹣3)(m≠0)兩交點的橫坐標為x1x2,nx1+x2﹣2,若A(1,a),Bb,)兩點在動點Mmn)所形成的曲線上,求直線AB的解析式;

(3)將(2)中的直線AB繞點(3,0)順時針旋轉45°,與拋物線x軸上方的部分相交于點C,請直接寫出點C的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉動轉盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉動轉盤甲,指針指向A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二:同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉動轉盤)

(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為多少;

(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店如果將進貨價為8元的商品按每件10元售出,每天可銷售200件,現在采用提高售價,減少進貨量的方法增加利潤,已知這種商品每漲價0.5元,其銷量就減少10件.

1)要使每天獲得利潤700元,請你幫忙確定售價;

2)問售價定在多少時能使每天獲得的利潤最多?并求出最大利潤.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某開發(fā)區(qū)有一塊四邊形空地ABCD,現計劃在空地上種植草皮.經測量,∠B90°,AB20m,BC15m,CD7m,AD24m

1)求這塊四邊形空地的面積;

2)若每平方米草皮需要200元,則種植這片草皮需要多少元?

查看答案和解析>>

同步練習冊答案