【題目】一個(gè)不透明的袋子里裝著質(zhì)地、大小都相同的3個(gè)紅球和2個(gè)綠球,隨機(jī)從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機(jī)摸出一球.兩次都摸到紅球的概率是( )
A.
B.
C.
D.
【答案】A
【解析】解:列表如下:
紅 | 紅 | 紅 | 綠 | 綠 | |
紅 | ﹣﹣﹣ | (紅,紅) | (紅,紅) | (綠,紅) | (綠,紅) |
紅 | (紅,紅) | ﹣﹣﹣ | (紅,紅) | (綠,紅) | (綠,紅) |
紅 | (紅,紅) | (紅,紅) | ﹣﹣﹣ | (綠,紅) | (綠,紅) |
綠 | (紅,綠) | (紅,綠) | (紅,綠) | ﹣﹣﹣ | (綠,綠) |
綠 | (紅,綠) | (紅,綠) | (紅,綠) | (綠,綠) | ﹣﹣﹣ |
得到所有可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,
則P兩次紅= = .
故選A
【考點(diǎn)精析】根據(jù)題目的已知條件,利用列表法與樹狀圖法的相關(guān)知識可以得到問題的答案,需要掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a、b相交于點(diǎn)O,∠1=50°,點(diǎn)A在直線a上,直線b上存在點(diǎn)B,使以點(diǎn)O、A、B為頂點(diǎn)的三角形是等腰三角形,這樣的B點(diǎn)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)如圖(1),若∠AOC=,求∠DOE的度數(shù);
(2)如圖(2),將∠COD繞頂點(diǎn)O旋轉(zhuǎn),且保持射線OC在直線AB上方,在整個(gè)旋轉(zhuǎn)過程中,當(dāng)∠AOC的度數(shù)是多少時(shí),∠COE=2∠DOB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖四個(gè)幾何體分別是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5個(gè)面,9條棱,6個(gè)頂點(diǎn),觀察圖形,填寫下面的空.
(1)四棱柱有 個(gè)面, 條棱, 個(gè)頂點(diǎn);
(2)六棱柱有 個(gè)面, 條棱, 個(gè)頂點(diǎn);
(3)由此猜想n棱柱有 個(gè)面, 條棱, 個(gè)頂點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y= x+1與y軸交于A點(diǎn),過點(diǎn)A的拋物線y=﹣ x2+bx+c與直線交于另一點(diǎn)B,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(3,0).
(1)直接寫出拋物線的解析式;
(2)動點(diǎn)P在線段OC上從原點(diǎn)出發(fā)以每秒一個(gè)單位的速度向C移動,過點(diǎn)P作PN⊥x軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N,設(shè)點(diǎn)P移動的時(shí)間為t秒,MN的長度為s個(gè)單位,求s與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)設(shè)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O,點(diǎn)C重合的情況),連接CM,BN,當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?對于所求的t值,平行四邊形BCMN是否菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的個(gè)數(shù)是 ( )
①若三條線段的比為1:1:,則它們組成一個(gè)等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④有兩個(gè)角相等的梯形是等腰梯形;⑤一條直線與矩形的一組對邊相交,必分矩形為兩個(gè)直角梯形。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).
(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點(diǎn)A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時(shí),求PB的長;
②直接寫出旋轉(zhuǎn)過程中線段PB長的最小值與最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題7分)如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點(diǎn),且AE=BC,過點(diǎn)A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點(diǎn)F.
(1)判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)連接BD、BE,若設(shè)BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com