【題目】中,是邊上的一點(不與點重合),邊上點在點的右邊且,點關(guān)于直線的對稱點為,連接

1)如圖1,

①依題意補全圖1

②求證:;

2)如圖2,用等式表示線段,之間的數(shù)量關(guān)系,并證明.

【答案】1)①依題意補全圖形,見解析;②見解析;(2)線段之間的數(shù)量關(guān)系是.證明見解析.

【解析】

1)①根據(jù)要求畫出圖形即可解決;②:連接,根據(jù)對稱可求出,即可得出結(jié)果;

2)連接,由(1)②,可得,在中,由勾股定理,得,即可得到結(jié)果.

1)①依題意補全圖形,如圖1

②證明:連接,如圖2

,

F與點D關(guān)于直線對稱,

,

,

2)線段之間的數(shù)量關(guān)系是

證明:連接,如圖3

,

由(1)②,可得

中,由勾股定理,得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知射線OC為∠AOB的平分線,且OAOB,點P是射線OC上的任意一點,連接AP、BP

1)求證:△AOP≌△BOP

2)若∠AOB50°,且點P是△AOB的外心,求∠APB的度數(shù);

3)若∠AOB50°,且△OAP為鈍角三角形,直接寫出∠OAP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75)分成五組,并繪制了下列不完整的統(tǒng)計圖表.

分?jǐn)?shù)段

頻數(shù)

頻率

74.579.5

2

0.05

79.584.5

m

0.2

84.589.5

12

0.3

89.594.5

14

n

94.599.5

4

0.1

(1)表中m__________,n____________

(2)請在圖中補全頻數(shù)直方圖;

(3)甲同學(xué)的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在_________分?jǐn)?shù)段內(nèi);

(4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學(xué)校從中隨機確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲,乙兩個電子團(tuán)隊整理一批電腦數(shù)據(jù),整理電腦的臺數(shù)為(臺)與整理需要的時間之間關(guān)系如下圖所示,請依據(jù)圖象提供的信息解答下列問題:

1)乙隊工作小時整理_____臺電腦,工作時兩隊一共整理了_______臺;

2)求甲、乙兩隊的關(guān)系式.

3)甲、乙兩隊整理電腦臺數(shù)相等時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在抗擊新冠肺炎疫情期間,老百姓越來越依賴電商渠道獲取必要的生活資料.小石經(jīng)營的水果店也適時加入了某電商平臺,并對銷售的水果中的部分(如下表)進(jìn)行促銷:參與促銷的水果免配送費且一次購買水果的總價滿128元減元.每筆訂單顧客網(wǎng)上支付成功后,小石會得到支付款的80%

參與促銷水果

水果

促銷前單價

蘋果

58/

耙耙柑

70/

車?yán)遄?/span>

100/

火龍果

48/

1)當(dāng)時,某顧客一次購買蘋果和車?yán)遄痈?/span>1箱,需要支付_____元,小石會得到______元;

2)在促銷活動中,為保障小石每筆訂單所得到的金額不低于促銷前總價的七折,則的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在足夠大的空地上有一段長為aa50)米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中ADMN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.

1)若圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;

2)求矩形菜園ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在三角形紙板中,,,點是邊上的一個點(不與點重合),沿折疊紙板,點的對應(yīng)點是點

1)如圖2,當(dāng)點在射線上時,________°.

2)若,且點不在直線右側(cè),則點的距離是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點A、B在直線MN上(AB的左側(cè)),點P是直線MN上方一點.若∠PANx°,∠PBNy°,記< xy >P的雙角坐標(biāo).例如,若PAB是等邊三角形,則點P的雙角坐標(biāo)為< 60,120 >

1)如圖2,若AB22 cm,P26.658>,求PAB的面積;

(參考數(shù)據(jù):tan26.6°≈0.50,tan58°≈1.60.)

2)在圖3中用直尺和圓規(guī)作出點P < xy >,其中y2xyx30.(保留作圖痕跡)

查看答案和解析>>

同步練習(xí)冊答案