【題目】為了慶祝中華人民共和國(guó)成立70周年,某市決定開(kāi)展“我和祖國(guó)共成長(zhǎng)”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(jī)(滿分為100分,得分為正整數(shù)且無(wú)滿分,最低為75)分成五組,并繪制了下列不完整的統(tǒng)計(jì)圖表.

分?jǐn)?shù)段

頻數(shù)

頻率

74.579.5

2

0.05

79.584.5

m

0.2

84.589.5

12

0.3

89.594.5

14

n

94.599.5

4

0.1

(1)表中m__________,n____________;

(2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)直方圖;

(3)甲同學(xué)的比賽成績(jī)是40位參賽選手成績(jī)的中位數(shù),據(jù)此推測(cè)他的成績(jī)落在_________分?jǐn)?shù)段內(nèi);

(4)選拔賽中,成績(jī)?cè)?/span>94.5分以上的選手,男生和女生各占一半,學(xué)校從中隨機(jī)確定2名選手參加全市決賽,請(qǐng)用列舉法或樹(shù)狀圖法求恰好是一名男生和一名女生的概率.

【答案】(1)8,0.35;(2)見(jiàn)解析;(3)89.594.5;(4).

【解析】

(1)根據(jù)頻數(shù)=總數(shù)×頻率可求得m的值,利用頻率=頻數(shù)÷總數(shù)可求得n的值;

(2)根據(jù)m的值補(bǔ)全直方圖即可;

(3)根據(jù)中位數(shù)的概念進(jìn)行求解即可求得答案;

(4)畫樹(shù)狀圖得到所有等可能的情況數(shù),找出符合條件的情況數(shù),然后利用概率公式進(jìn)行求解即可.

(1)m40×0.28,n14÷400.35,

故答案為:8,0.35;

(2)補(bǔ)全圖形如下:

(3)由于40個(gè)數(shù)據(jù)的中位數(shù)是第20、21個(gè)數(shù)據(jù)的平均數(shù),而第20、21個(gè)數(shù)據(jù)均落在89.594.5

∴推測(cè)他的成績(jī)落在分?jǐn)?shù)段89.594.5內(nèi),

故答案為:89.594.5

(4)選手有4人,2名是男生,2名是女生,畫樹(shù)狀圖如下:

共有12種等可能的結(jié)果,其中一名男生一名女生的結(jié)果數(shù)有8種,

所以恰好是一名男生和一名女生的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了豐富學(xué)生課余生活,決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球;B乒乓球;C羽毛球;D足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:

(1)這次被調(diào)查的學(xué)生共有__________人;

(2)請(qǐng)你將條形統(tǒng)計(jì)圖(1)補(bǔ)充完整;

(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,AB4,∠CAB30°,以AB的中點(diǎn)為圓心,OA的長(zhǎng)為半徑作半圓交AC于點(diǎn)D,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】港口 AB、C 依次在同一條直線上,甲、乙兩艘船同時(shí)分別從 A、B兩港出發(fā),勻速駛向 C 港,甲、乙兩船與 B 港的距離 y(海里)與行駛時(shí)間 x 時(shí))之間的函數(shù)關(guān)系如圖所示,則下列說(shuō)法錯(cuò)誤的是( )

A.甲船平均速度為 60 海里/時(shí)B.乙船平均速度為 30 海里/時(shí)

C.甲、乙兩船在途中相遇兩次D.A、C 兩港之間的距離為 120 海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y ax2 - 2ax 3a x 軸正半軸于點(diǎn) A,負(fù)半軸于點(diǎn) B,交 y 軸于點(diǎn)C,tanOBC=3

(1) a 值;

(2)點(diǎn) P 為第一象限拋物線上一點(diǎn),連接 AC、PA、PC,若點(diǎn) P 的橫坐標(biāo)為 t, PAC 的面積為S,求 St的函數(shù)解析式,(請(qǐng)直接寫出自變量 t 的取值范圍);

(3)在(2)的條件下,過(guò)點(diǎn) P PDy 軸交 CA 延長(zhǎng)線于點(diǎn) D,連接 PB,交 y 軸于點(diǎn) E,點(diǎn) Q 為第二象限拋物線上一點(diǎn),連接 QE 并延長(zhǎng)分別交 x 軸、拋物線于點(diǎn) N、F,連接 FD,交 x 軸于點(diǎn) K ,當(dāng)E QF 的中點(diǎn)且 FN=FK 時(shí),求直線 DF 的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,已知∠ACB90°,ACBC4,若點(diǎn)E△ABC內(nèi)部運(yùn)動(dòng),且滿足AE2BE22CE2,則點(diǎn)E的運(yùn)動(dòng)路徑長(zhǎng)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地為了促進(jìn)旅游業(yè)的發(fā)展,要在如圖所示的三條公路,圍成的一塊地上修建一個(gè)度假村,要使這個(gè)度假村到,兩條公路的距離相等,且到,兩地的距離相等,下列選址方法繪圖描述正確的是(

A.的平分線,再畫線段的垂直平分線,兩線的交點(diǎn)符合選址條件

B.先畫的平分線,再畫線段的垂直平分線,三線的交點(diǎn)符合選址條件

C.畫三個(gè)角三個(gè)角的平分線,交點(diǎn)即為所求

D.,三條線段的垂直平分線,交點(diǎn)即為所求

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,是邊上的一點(diǎn)(不與點(diǎn)重合),邊上點(diǎn)在點(diǎn)的右邊且,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,連接

1)如圖1,

①依題意補(bǔ)全圖1;

②求證:;

2)如圖2,用等式表示線段,之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線Ly=ax2+bx+cx軸交于A、B3,0)兩點(diǎn)(AB的左側(cè)),與y軸交于點(diǎn)C0,3),已知對(duì)稱軸x=1

1)求拋物線L的解析式;

2)將拋物線L向下平移h個(gè)單位長(zhǎng)度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;

3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線lx=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案