已知Rt△ABC中,CD⊥AB于D,且AD=3,AC=6.則AB=________.

12
分析:先根據(jù)CD⊥AB于D,AD=3,AC=6得到∠ACD是30°,再利用同角的余角相等得到∠B=∠ACD=30°,所以AB=2AC=12.
解答:∵CD⊥AB于D,AD=3,AC=6,
∴∠ACD=30°,
∵CD⊥AB于D,
∴∠B+∠BCD=90°
又∠ACD+∠BCD=90°
∴∠B=∠ACD=30°,
∵AC=6,
∴AB=2AC=12.
點評:本題利用直角三角形30°所對的直角邊等于斜邊的一半.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB邊所在的直線為軸,將△ABC旋轉(zhuǎn)一周,則所得幾何體的表面積是( 。
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延長線于E,BA、CE延長線相交于F點.
求證:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,兩直角邊AC、BC的長是關(guān)于x的方程x2-(m+5)x+6m=0的兩個實數(shù)根.求m的值及AC、BC的長(BC>AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,已知Rt△ABC中,∠C=90°∠A=36°,以C為圓心,CB為半徑的圓交AB于P,則弧BP的度數(shù)是
72
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠ACB=90°,CA=CB,點D在BC的延長線上,點E在AC上,且CD=CE,延長BE交AD于點F,求證:BF⊥AD.

查看答案和解析>>

同步練習冊答案