【題目】如圖,將正n邊形繞點A順時針旋轉(zhuǎn)60°后,發(fā)現(xiàn)旋轉(zhuǎn)前后兩圖形有另一交點O,連接AO,我們稱AO為“疊弦”;再將“疊弦”AO所在的直線繞點A逆時針旋轉(zhuǎn)60°后,交旋轉(zhuǎn)前的圖形于點P,連接PO,我們稱∠OAB為“疊弦角”,△AOP為“疊弦三角形”.
【探究證明】
(1)請在圖1和圖2中選擇其中一個證明:“疊弦三角形”(△AOP)是等邊三角形;
(2)如圖2,求證:∠OAB=∠OAE′.
【歸納猜想】
(3)圖1、圖2中的“疊弦角”的度數(shù)分別為 , ;
(4)圖n中,“疊弦三角形” 等邊三角形(填“是”或“不是”)
(5)圖n中,“疊弦角”的度數(shù)為 (用含n的式子表示)
【答案】(1)證明見解析;(2)證明見解析;(3)15°,24°;(4)是;(5).
【解析】
試題分析:(1)先由旋轉(zhuǎn)的性質(zhì),再判斷出△APD≌△AOD',最后用旋轉(zhuǎn)角計算即可;
(2)先判斷出Rt△AEM≌Rt△ABN,在判斷出Rt△APM≌Rt△AON 即可;
(3)先判斷出△AD′O≌△ABO,再利用正方形,正五邊形的性質(zhì)和旋轉(zhuǎn)的性質(zhì),計算即可;
(4)先判斷出△APF≌△AE′F′,再用旋轉(zhuǎn)角為60°,從而得出△PAO是等邊三角形;
(5)用(3)的方法求出正n邊形的,“疊弦角”的度數(shù).
試題解析:(1)如圖1,∵四ABCD是正方形,由旋轉(zhuǎn)知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°,∴∠DAP=∠D'AO,∴△APD≌△AOD',∴AP=AO,∵∠OAP=60°,∴△AOP是等邊三角形;
(2)如圖2,作AM⊥DE于M,作AN⊥CB于N.∵五ABCDE是正五邊形,由旋轉(zhuǎn)知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°,∴∠EAP=∠E'AO,∴△APE≌△AOE'(ASA),∴∠OAE'=∠PAE.
在Rt△AEM和Rt△ABN中,∠AEM=∠ABN=72°,AE=AB,∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM=∠BAN,AM=AN.在Rt△APM和Rt△AON中,AP=AO,AM=AN,∴Rt△APM≌Rt△AON (HL),∴∠PAM=∠OAN,∴∠PAE=∠OAB,∴∠OAE'=∠OAB (等量代換).
(3)由(1)有,△APD≌△AOD',∴∠DAP=∠D′AO,在△AD′O和△ABO中,∵AD′=AB,AO=AO,∴△AD′O≌△ABO,∴∠D′AO=∠BAO,由旋轉(zhuǎn)得,∠DAD′=60°,∵∠DAB=90°,∴∠D′AB=∠DAB﹣∠DAD′=30°,∴∠D′AD=∠D′AB=15°,同理可得,∠E′AO=24°,故答案為:15°,24°.
(4)如圖3,∵六邊形ABCDEF和六邊形A′B′C′E′F′是正六邊形,∴∠F=F′=120°,由旋轉(zhuǎn)得,AF=AF′,EF=E′F′,∴△APF≌△AE′F′,∴∠PAF=∠E′AF′,由旋轉(zhuǎn)得,∠FAF′=60°,AP=AO
∴∠PAO=∠FAO=60°,∴△PAO是等邊三角形.
故答案為:是.
(5)同(3)的方法得,∠OAB=[(n﹣2)×180°÷n﹣60°]÷2=.
故答案:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:
①AC=AD;②BD⊥AC;③四邊形ACED是菱形.
其中正確的個數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟進(jìn)行裁剪和拼圖.
第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(E為BD上任意一點),得到△ABE和△ADE紙片;
第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;
第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側(cè)).
則由紙片拼成的五邊形PMQRN中,對角線MN長度的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a、b是兩個整數(shù),若定義一種運算“△”,a△b=a2+b2+ab,則方程(x+2)△x=1的實數(shù)根是( 。
A. x1=x2=1B. x1=0,x2=1
C. x1=x2=﹣1D. x1=1,x2=﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過70km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀A處的正前方30m的C處,過了2s后,測得小汽車與車速檢測儀間距離為50m,這輛小汽車超速了嗎?(參考數(shù)據(jù)轉(zhuǎn)換:1m/s=3.6km/h)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與x軸交于A(6,0)、B(,0)兩點,與y軸交于點C,過拋物線上點M(1,3)作MN⊥x軸于點N,連接OM.
(1)求此拋物線的解析式;
(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點E、F.
①當(dāng)點F為M′O′的中點時,求t的值;
②如圖2,若直線M′N′與拋物線相交于點G,過點G作GH∥M′O′交AC于點H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線過B(﹣2,6),C(2,2)兩點.
(1)試求拋物線的解析式;
(2)記拋物線頂點為D,求△BCD的面積;
(3)若直線向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com