【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:

AC=AD;②BDAC;③四邊形ACED是菱形

其中正確的個(gè)數(shù)是(

A0 B1 C2 D3

【答案】D

【解析】

試題分析:∵將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等邊三角形,∴AC=AD,AC=AD=DE=CE,∴四邊形ACED是菱形,∵將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,∴BD⊥AC,∴①②③都正確,故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yx24x1的頂點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在|﹣2|,(﹣2)3,﹣|﹣2|,﹣(﹣2)這四個(gè)數(shù)中,負(fù)數(shù)共有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△AFD和△CEB中,點(diǎn)A、E、F、C在同一條直線上.有下面四個(gè)論斷:

(1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC.

請用其中三個(gè)作為條件,余下一個(gè)作為結(jié)論,進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( ).

A.(a)2(a)3=a6B.(a2)3 a6= a12

C.a10÷a2=a5D.a2+a3= a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)問題:計(jì)算(其中mn都是正整數(shù),且m≥2n≥1).

探究問題:為解決上面的數(shù)學(xué)問題,我們運(yùn)用數(shù)形結(jié)合的思想方法,通過不斷地分割一個(gè)面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來,并采取一般問題特殊化的策略來進(jìn)行探究.

探究一:計(jì)算

1次分割,把正方形的面積二等分,其中陰影部分的面積為;

2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為;

3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,;

n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: =1

探究二:計(jì)算

1次分割,把正方形的面積三等分,其中陰影部分的面積為;

2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為

3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,;

n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: =1,

兩邊同除以2,得=.

探究三:計(jì)算

(仿照上述方法,只畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并寫出探究過程)

解決問題:計(jì)算

(只需畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并完成以下填空)

根據(jù)第n次分割圖可得等式:      

所以, =      

拓廣應(yīng)用:計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮家與姥姥家相距24km,小亮800從家出發(fā),騎自行車去姥姥家.媽媽830從家出發(fā),乘車沿相同路線去姥姥家.在同一直角坐標(biāo)系中,小亮和媽媽的行進(jìn)路程Skm)與北京時(shí)間t(時(shí))的函數(shù)圖象如圖所示.根據(jù)圖象得到小亮結(jié)論,其中錯(cuò)誤的是( )

A. 小亮騎自行車的平均速度是12km/h

B. 媽媽比小亮提前0.5小時(shí)到達(dá)姥姥家

C. 媽媽在距家12km處追上小亮

D. 930媽媽追上小亮

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算中,正確的是( )
A.a3÷a2=a
B.a2+a2=a4
C.(ab)3=a4
D.2ab﹣b=2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正n邊形繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后,發(fā)現(xiàn)旋轉(zhuǎn)前后兩圖形有另一交點(diǎn)O,連接AO,我們稱AO為“疊弦”;再將“疊弦”AO所在的直線繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后,交旋轉(zhuǎn)前的圖形于點(diǎn)P,連接PO,我們稱∠OAB為“疊弦角”,△AOP為“疊弦三角形”

【探究證明】

1)請?jiān)趫D1和圖2中選擇其中一個(gè)證明:“疊弦三角形”(△AOP)是等邊三角形;

2)如圖2,求證:∠OAB=∠OAE

【歸納猜想】

3)圖1、圖2中的“疊弦角”的度數(shù)分別為 , ;

4)圖n中,“疊弦三角形” 等邊三角形(填“是”或“不是”)

5)圖n中,“疊弦角”的度數(shù)為 (用含n的式子表示)

查看答案和解析>>

同步練習(xí)冊答案