【題目】已知代數(shù)式x+2y的值是3,則代數(shù)式2x+4y+1的值是

【答案】7
【解析】解:∵x+2y=3,
∴2x+4y+1=2(x+2y)+1
=2×3+1=7.
所以答案是:7.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解代數(shù)式求值的相關(guān)知識(shí),掌握求代數(shù)式的值,一般是先將代數(shù)式化簡(jiǎn),然后再將字母的取值代入;求代數(shù)式的值,有時(shí)求不出其字母的值,需要利用技巧,“整體”代入.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若|a|=2,則a=(
A.2
B.﹣2
C.2或﹣2
D.以上答案都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果m是任意實(shí)數(shù),則點(diǎn)P(m+2,m4)一定不在( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一種運(yùn)算“*”,其規(guī)則為aba2b2,則方程(x+2*50的解為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn)再求值:
已知多項(xiàng)式A=3a2﹣6ab+b2 , B=﹣2a2+3ab﹣5b2 , 當(dāng)a=1,b=﹣1時(shí),試求A+2B的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校實(shí)施課程改革,為初三學(xué)生設(shè)置了 A,B,C,DE,F 共六門(mén)不同的拓展性課程,現(xiàn)隨機(jī)抽取若干學(xué)生進(jìn)行了“我最想選的一門(mén)課”調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)根據(jù)圖表提供的信息,下列結(jié)論錯(cuò)誤的是( )

A. 這次被調(diào)查的學(xué)生人數(shù)為200人

B. 扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°

C. 被調(diào)查的學(xué)生中最想選 F 的人數(shù)為 35 人

D. 被調(diào)查的學(xué)生中最想選 D 的有 55 人

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過(guò)E作EF⊥AB,F(xiàn)為垂足.下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正確的是(

A.①②③
B.①③④
C.①②④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某一城市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,乙隊(duì)單獨(dú)完成這項(xiàng)工程需要90天;若由甲隊(duì)先做20天,剩下的工程由甲、乙兩隊(duì)合做完成.

1)甲、乙兩隊(duì)合作多少天?

2)甲隊(duì)施工一天需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需付工程款2萬(wàn)元.若該工程計(jì)劃在70天內(nèi)完成,在不超過(guò)計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢(qián)?還是由甲乙兩隊(duì)全程合作完成該工程省錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:
(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是
探索延伸:

(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF= ∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案