【題目】如圖,二次函數(shù)y=﹣x2+2(m﹣2)x+3的圖象與x、y軸交于A、B、C三點(diǎn),其中A(3,0),拋物線的頂點(diǎn)為D.

(1)求m的值及頂點(diǎn)D的坐標(biāo);

(2)如圖1,若動點(diǎn)P在第一象限內(nèi)的拋物線上,動點(diǎn)N在對稱軸1上,當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);

(3)如圖2,若點(diǎn)Q是二次函數(shù)圖象上對稱軸右側(cè)一點(diǎn),設(shè)點(diǎn)Q到直線BC的距離為d,到拋物線的對稱軸的距離為d1,當(dāng)|d﹣d1|=2時(shí),請求出點(diǎn)Q的坐標(biāo).

【答案】(1)m=3,(1,4);(2)(1,2);(3)(,2﹣7)

【解析】

(1)將點(diǎn)A的坐標(biāo)代入函數(shù)表達(dá)式,即可求解;

(2)證明△NMA≌△AHP(AAS),則AH=MN=3﹣1=2,即yP=2=﹣x2+2x+3,即可求解;

(3)已知點(diǎn)B,點(diǎn)C的坐標(biāo)可求出直線BC的解析式,過點(diǎn)Q作y軸的平行線交BC于點(diǎn)M,則∠BCO=∠M,設(shè)點(diǎn)Q(t,﹣t2+2t+3),則點(diǎn)M(t,3t+3),則d=DH=MQ[(3t+3)﹣(﹣t2+2t+3)],d1=t﹣1,即可求解.

(1)將點(diǎn)A的坐標(biāo)代入函數(shù)表達(dá)式得:0=﹣32+2m2×3+3,

解得:m=3,

故拋物線的表達(dá)式為:y=﹣x2+2x+3,

故點(diǎn)D的坐標(biāo)為:(1,4);

(2)過點(diǎn)A作y軸的平行線交過點(diǎn)N與x軸的平行線于點(diǎn)M,交過點(diǎn)P與x軸的平行線于點(diǎn)H,

∵∠NAM+∠PAH=90°,∠NAM+∠ANM=90°,

∴∠PAH=∠ANM,

∵∠NMA=∠AHP=90°,AP=NP,

∴△NMA≌△AHP(AAS),

∴AN=MN=3﹣1=2,

即yP=2=﹣x2+2x+3,

解得:x=(舍去負(fù)值),

故點(diǎn)P;

(3)設(shè)直線BC的表達(dá)式為:y=kx+b,則,解得:,

由點(diǎn)B、C的表達(dá)式為:y=3x+3,

如圖2,過點(diǎn)Q作y軸的平行線交BC于點(diǎn)M,交x軸于點(diǎn)N,

則MN∥y軸,

∴∠BCO=∠M,而,則=sin∠M,

過點(diǎn)Q作QH⊥BM,設(shè)點(diǎn)Q(t,﹣t2+2t+3),則點(diǎn)M(t,3t+3),

則d=DH=MQ [(3t+3)﹣(﹣t2+2t+3)],d1=t﹣1,

∵|d﹣d1|=2,即 [(3t+3)﹣(﹣t2+2t+3)]﹣(t﹣1)=±2,

解得:t=或﹣1(舍去),

故點(diǎn)Q的坐標(biāo)為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,中點(diǎn),點(diǎn)在線段上,連接,在下方有一點(diǎn),滿足,連接

1)若,,求的面積;

2)若,,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC與△CDE中,∠ACBCDE90°,ACBC,CDED,連接AE,BEFAE的中點(diǎn),連接DF,△CDE繞著點(diǎn)C旋轉(zhuǎn).

(1)如圖1,當(dāng)點(diǎn)D落在AC上時(shí),DFBE的數(shù)量關(guān)系是: ;

(2)如圖2,當(dāng)△CDE旋轉(zhuǎn)到該位置時(shí),DFBE是否仍具有(1)中的數(shù)量關(guān)系,如果具有,請給予證明;如果沒有,請說明理由;

(3)如圖3,當(dāng)點(diǎn)E落在線段CB延長線上時(shí),若CDAC2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線,直線與拋物線、軸分別相交于、

1時(shí),點(diǎn)的坐標(biāo)為________;

2)當(dāng)、兩點(diǎn)重合時(shí),求的值;

3)當(dāng)點(diǎn)達(dá)到最高時(shí),求拋物線解析式;

4)在拋物線軸所圍成的封閉圖形的邊界上,我們把橫坐標(biāo)是整數(shù)的點(diǎn)稱為可點(diǎn),直接寫出時(shí)可點(diǎn)的個(gè)數(shù)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,對角線ACBD交于點(diǎn)O,以ADOD為鄰邊作平行四邊形ADOE,連接BE

1)求證:四邊形AOBE是菱形;

2)若∠EAO+∠DCO180°DC3,求四邊形ADOE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形的頂點(diǎn),點(diǎn),反比例函數(shù)

(1)如圖1,雙曲線經(jīng)過點(diǎn)時(shí)求反比例函數(shù)的關(guān)系式;

 

(2)如圖2,正方形向下平移得到正方形軸上,反比例函數(shù)的圖象分別交正方形的邊、邊于點(diǎn)

①求的面積;

②如圖3,軸上一點(diǎn),是否存在是等腰三角形,若存在直接寫出點(diǎn)坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了緩解市區(qū)日益擁堵的交通狀況,長沙市地鐵建設(shè)工程指揮部對長沙地鐵4號線茶子山站工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的指標(biāo)書,從指標(biāo)書中得知:甲工程隊(duì)單獨(dú)完成這項(xiàng)工程所需的時(shí)間是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需的時(shí)間的3倍,若由甲隊(duì)先做2個(gè)月,剩下的工程由甲、乙兩隊(duì)合作4個(gè)月可以完成.

1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需幾個(gè)月?

2)已知甲隊(duì)每月的施工費(fèi)用是76萬元,乙隊(duì)每月的施工費(fèi)用是164萬元,工程預(yù)算的施工費(fèi)用為1000萬元,為縮短工期以減少隊(duì)交通的影響,擬安排甲、乙兩隊(duì)合作完成這項(xiàng)工程,則工程預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬元?請給出擬的判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn),是以點(diǎn)為圓心,2為半徑的圓上的動點(diǎn),是線段的中點(diǎn),連結(jié).則線段的最大值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是BC,AD邊上的點(diǎn),且AE=CF,若ACEF,試判斷四邊形AECF的形狀,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案