【題目】像=x這樣的方程,可以通過方程兩邊平方把它轉(zhuǎn)化為2x+3=x2,解得x1=3,x2=﹣1.但由于兩邊平方,可能產(chǎn)生增根,所以需要檢驗,經(jīng)檢驗,當x1=3時,=3滿足題意;當x2=﹣1時,=﹣1不符合題意;所以原方程的解是x=3.運用以上經(jīng)驗,則方程x+=1的解為_____.
科目:初中數(shù)學 來源: 題型:
【題目】一般地,對于已知一次函數(shù)y1=ax+b,y2=cx+d(其中a,b,c,d為常數(shù),且ac<0),定義一個新函數(shù)y=,稱y是y1與y2的算術中項,y是x的算術中項函數(shù).
(1)如:一次函數(shù)y1=x﹣4,y2=﹣x+6,y是x的算術中項函數(shù),即y=.
①自變量x的取值范圍是 ,當x= 時,y有最大值;
②根據(jù)函數(shù)研究的途徑與方法,請?zhí)顚懴卤,并在圖1中描點、連線,畫出此函數(shù)的大致圖象;
x | 8 | 9 | 10 | 12 | 13 | 14 | 16 | 17 | 18 |
y | 0 | 1.2 | 1.6 |
| 2.04 | 2 |
| 1.2 | 0 |
③請寫出一條此函數(shù)可能有的性質(zhì) ;
(2)如圖2,已知一次函數(shù)y1=x+2,y2=﹣2x+6的圖象交于點E,兩個函數(shù)分別與x軸交于點A,C,與y軸交于點B,D,y是x的算術中項函數(shù),即y=.
①判斷:點A、C、E是否在此算術中項函數(shù)的圖象上;
②在平面直角坐標系中是否存在一點,到此算術中項函數(shù)圖象上所有點的距離相等,如果存在,請求出這個點;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下面的正方形網(wǎng)格中,每個小正方形的邊長為1個單位,△ABC是格點三角形(頂點在網(wǎng)格交點處) .
(1)作出△ABC的中心對稱圖形△,A點為對稱中心;
(2)作出△ABC關于點P的位似△A'B'C',且位似比為1:2;
(3)在圖中畫出以A、B、C為頂點的平行四邊形的第四個頂點D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)的圖象與反比例函數(shù)(為常數(shù),)的圖象有一個交點的橫坐標是2.
(1)求兩個函數(shù)圖象的交點坐標;
(2)若點,是反比例函數(shù)圖象上的兩點,且,試比較的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,過點D作DE∥BC交AB于點E,DF∥AB交BC于點F.
⑴求證:四邊形BEDF為菱形;
⑵如果∠A=100°,∠C=30°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,水平放置一個三角板和一個量角器,三角板的邊AB和量角器的直徑DE在一條直線上,∠ACB=90°,∠BAC=30°,OD=3cm,開始的時候BD=1cm,現(xiàn)在三角板以2cm/s的速度向右移動.
(1)當點B于點O重合的時候,求三角板運動的時間;
(2)三角板繼續(xù)向右運動,當B點和E點重合時,AC與半圓相切于點F,連接EF,如圖2所示.
①求證:EF平分∠AEC;
②求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,扇形OAB的半徑OA=4,圓心角∠AOB=90°,點C是弧AB上異于A、B的一點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連結(jié)DE,過點C作弧AB所在圓的切線CG交OA的延長線于點G.
(1)求證:∠CGO=∠CDE;
(2)若∠CGD=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了強化司機的交通安全意識,我市利用交通安全宣傳月對司機進行了交通安全知識問卷調(diào)查.關于酒駕設計了如下調(diào)查問卷:
克服酒駕﹣﹣你認為哪種方式最好?(單選) |
A加大宣傳力度,增強司機的守法意識. B在汽車上張貼溫馨提示:“請勿酒駕”. C司機上崗前簽“拒接酒駕”保證書. D加大檢查力度,嚴厲打擊酒駕. E查出酒駕追究一同就餐人的連帶責任. |
隨機抽取部分問卷,整理并制作了如下統(tǒng)計圖:
根據(jù)上述信息,解答下列問題:
(1)本次調(diào)查的樣本容量是多少?
(2)補全條形圖,并計算B選項所對應扇形圓心角的度數(shù);
(3)若我市有3000名司機參與本次活動,則支持D選項的司機大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E,F分別為BC,CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長于點Q,下列結(jié)論正確的有( )個.
①AE⊥BF;②QB=QF;③;④SECPG=3S△BGE
A.1B.4C.3D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com