【題目】為了強化司機的交通安全意識,我市利用交通安全宣傳月對司機進行了交通安全知識問卷調(diào)查.關(guān)于酒駕設(shè)計了如下調(diào)查問卷:

克服酒駕﹣﹣你認為哪種方式最好?(單選)

A加大宣傳力度,增強司機的守法意識. B在汽車上張貼溫馨提示:“請勿酒駕”.

C司機上崗前簽“拒接酒駕”保證書. D加大檢查力度,嚴厲打擊酒駕.

E查出酒駕追究一同就餐人的連帶責任.

隨機抽取部分問卷,整理并制作了如下統(tǒng)計圖:

根據(jù)上述信息,解答下列問題:

(1)本次調(diào)查的樣本容量是多少?

(2)補全條形圖,并計算B選項所對應(yīng)扇形圓心角的度數(shù);

(3)若我市有3000名司機參與本次活動,則支持D選項的司機大約有多少人?

【答案】(1)樣本容量300 ;(2)補圖見解析,48°;(3)支持D選項的司機大約有800人.

【解析】試題分析:(1)用E小組的頻數(shù)除以該組所占的百分比即可求得樣本容量;

(2)用總?cè)藬?shù)乘以該組所占的百分比即可求得A組的人數(shù),總數(shù)減去其他小組的頻數(shù)即可求得B小組的人數(shù);

(3)總?cè)藬?shù)乘以支持D選項的人數(shù)占300人的比例即可;

試題解析:(1)樣本容量:69÷23%=300 ;

(2)A組人數(shù)為300×30%=90(人)

B組人數(shù):300﹣(90+21+80+69)=40(人,)

補全條形圖人數(shù)為40 ,

圓心角度數(shù)為 360°× =48°;

(3)3000× =800(人),

答:支持D選項的司機大約有800人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某高速鐵路工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書.從投標書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的 :若由甲隊先做20天,剩下的工程再由甲、乙兩隊合作60天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)已知甲隊每天的施工費用為8.6萬元,乙隊每天的施工費用為5.4萬元,工程預(yù)算的施工費用為1000萬元.若在甲、乙工程隊工作效率不變的情況下使施工時間最短,問擬安排預(yù)算的施工費用是否夠用?若不夠用,需追加預(yù)算多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ab=2,則a2b24b的值為(  )

A.2B.4C.6D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面中,將拋物線y=2x2先向上平移1個單位,再向右平移1個單位,那么平移后的拋物線解析式是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,四邊形ABCD為⊙O內(nèi)接四邊形,連接AC、CO、BO,點C為弧BD的中點.

(1)求證:∠DAC=∠ACO+∠ABO;

(2)如圖2,點E在OC上,連接EB,延長CO交AB于點F,若∠DAB=∠OBA+∠EBA.求證:EF=EB;

(3)在(2)的條件下,如圖3,若OE+EB=AB,CE=2,AB=13,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù) 與一次函數(shù) 的圖像交于點A.

(1)求點A的坐標;
(2)設(shè)x軸上一點P(a,b),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交 的圖像于點B、C,連接OC,若BC= OA,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點P(﹣2,4)所在的象限是(  )

A. 第三象限 B. 第二象限 C. 第一象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,射線AM⊥AB,點P在AM上,連接OP交半圓O于點D,PC切半圓O于點C,連接BC,OC.

(1)求證:△OAP≌△OCP;

(2)若半圓O的半徑等于2,填空:

①當AP=    時,四邊形OAPC是正方形;

②當AP=   時,四邊形BODC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形紙片內(nèi)有100個點,連同三角形的頂點共103個點,其中任意三點都不共線.現(xiàn)以這些點為頂點作三角形,并把紙片剪成小三角形,這樣的小三角形的個數(shù)是 ( )
A.299
B.201
C.205
D.207

查看答案和解析>>

同步練習冊答案