【題目】已知關(guān)于x的一元二次方程x2+ax+b=0有一個(gè)非零根﹣b,則a﹣b的值為(
A.1
B.﹣1
C.0
D.﹣2

【答案】A
【解析】解:∵關(guān)于x的一元二次方程x2+ax+b=0有一個(gè)非零根﹣b, ∴b2﹣ab+b=0,
∵﹣b≠0,
∴b≠0,
方程兩邊同時(shí)除以b,得b﹣a+1=0,
∴a﹣b=1.
故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F、G、H分別為菱形ABCD四邊的中點(diǎn),AB=6cm,ABC=60°,則四邊形EFGH的面積為__cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是2,3,點(diǎn)B的坐標(biāo)是2,-2,若把線段AB向左平移3個(gè)單位后變?yōu)锳B,則AB可表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種花卉每盆的盈利與每盆的株數(shù)有一定的關(guān)系,每盆植3株時(shí),平均每株盈利4元;若每盆增加1株,平均每株盈利減少0.5元,要使每盆的盈利達(dá)到15元,每盆應(yīng)多植多少株?設(shè)每盆多植x株,則可以列出的方程是( )
A.(3+x)(4﹣0.5x)=15
B.(x+3)(4+0.5x)=15
C.(x+4)(3﹣0.5x)=15
D.(x+1)(4﹣0.5x)=15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知22×83=2n , 則n的值為(
A.18
B.8
C.7
D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠DAB=60°,AB=2AD,點(diǎn) E、F分別是AB、CD的中點(diǎn),過點(diǎn)A作AG∥BD,交CB的延長(zhǎng)線于點(diǎn)G.
(1)求證:四邊形DEBF是菱形;
(2)請(qǐng)判斷四邊形AGBD是什么特殊四邊形?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等. 如圖1,一束光線m射到平面鏡a上,被a反射后的光線為n,則入射光線m、反射光線n與平面鏡a所夾的銳角∠1=∠2.

(1)如圖2,一束光線m射到平面鏡a上,被a反射到平面鏡b上,又被b反射.若被b反射出的光線n與光線m平行,且∠1=50°,則∠2=°,∠3=°.
(2)在(1)中m∥n,若∠1=55°,則∠3=°;若∠1=40°,則∠3=°.
(3)由(1)、(2),請(qǐng)你猜想:當(dāng)兩平面鏡a、b的夾角∠3=°時(shí),可以使任何射到平面鏡a上的光線m,經(jīng)過平面鏡a、b的兩次反射后,入射光線m與反射光線n平行.你能說明理由嗎?
(4)如圖3,兩面鏡子的夾角為α°(0<α<90)時(shí),進(jìn)入光線與離開光線的夾角為β°
(0<β<90).試探索α與β的數(shù)量關(guān)系.直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,長(zhǎng)方形的兩邊長(zhǎng)分別為m+1,m+7;如圖②,長(zhǎng)方形的兩邊
長(zhǎng)分別為m+2,m+4.(其中m為正整數(shù))

(1)圖①中長(zhǎng)方形的面積 =
圖②中長(zhǎng)方形的面積 =
比較: (填“<”、“=”或“>”)
(2)現(xiàn)有一正方形,其周長(zhǎng)與圖①中的長(zhǎng)方形周長(zhǎng)相等,則
①求正方形的邊長(zhǎng)(用含m的代數(shù)式表示);
②試探究:該正方形面積 與圖①中長(zhǎng)方形面積 的差(即 - )是一個(gè)常數(shù),求出這個(gè)常數(shù).
(3)在(1)的條件下,若某個(gè)圖形的面積介于 、 之間(不包括 )并且面積為整數(shù),這樣的整數(shù)值有且只有10個(gè),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,AH⊥BC于H,AH=CH=5,則四邊形ABCD的面積是(  )

A.15
B.20
C.25
D.無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案