精英家教網(wǎng)如圖,在銳角△ABC中,以BC為直徑的半圓O分別交AB,AC與D、E兩點,且cosA=
3
3
,則S△ADE:S四邊形DBCE的值為( 。
A、
1
2
B、
1
3
C、
3
2
D、
3
3
分析:連接BE,由∠A得余弦值可得到AE、AB的比例關(guān)系;易證得△ADE∽△ACB,那么AE、AB的比即為兩個三角形的相似比,進而可求出兩個三角形的面積比,也就能求出△ADE、四邊形BDEC的面積比.
解答:精英家教網(wǎng)解:連接BE;
∵BC是⊙O的直徑,
∴∠BEC=90°;
在Rt△ABE中,cosA=
3
3
,即
AE
AB
=
3
3
;
∵四邊形BEDC內(nèi)接于⊙O,
∴∠ADE=∠ACB,∠AED=∠ABC,
∴△ADE∽△ABC,
S△ADE
S△ABC
=(
AE
AB
2=
1
3
;
所以S△ADE:S四邊形DBCE的值為
1
2

故選A.
點評:此題主要考查了圓內(nèi)接四邊形的性質(zhì)以及相似三角形的判定和性質(zhì),能夠?qū)ⅰ螦的余弦值轉(zhuǎn)換為△ADE、△ACB的相似比,是解決此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,a>b>c,以某任意兩個頂點為頂點作矩形,第三個頂點落在以這兩個頂點所確定的對邊上,這樣可以作三個面積相等的矩形,請問這三個矩形的周長大小關(guān)系如何?(記ta、tb、tc分別以a、b、c為邊的矩形的周長)答:
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖,在銳角△ABC中,AB>AC,AD⊥BC于D,以AD為直徑的⊙O分別交AB,AC于E,F(xiàn),連接DE,DF.
(1)求證:∠EAF+∠EDF=180°;
(2)已知P是射線DC上一個動點,當點P運動到PD=BD時,連接AP,交⊙O于G,連接DG.設(shè)∠EDG=∠α,∠APB=∠β,那么∠α與∠β有何數(shù)量關(guān)系?試證明你的結(jié)論.[在探究∠α與∠β的數(shù)量關(guān)系時,必要時可直接運用(1)的結(jié)論進行推理與解答]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,∠ABC的平分線交AC于點D,AB邊上的高CE交BD于點M,過點M作BC的垂線段MN,若EC=4,∠BCE=45°,則MN=
 
(結(jié)果保留三位有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在銳角△ABC中,AB=4,∠BAC=45°.∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點.則BM+MN的最小值是
2
2
2
2

查看答案和解析>>

同步練習冊答案