【題目】(1)如圖1,在平行四邊形ABCD中,∠A=30°,AB=6,AD=8,將平行四邊形ABCD分割成兩部分,然后拼成一個(gè)矩形,請(qǐng)畫出拼成的矩形,并說明矩形的長(zhǎng)和寬.(保留分割線的痕跡)
(2)若將一邊長(zhǎng)為1的正方形按如圖2﹣1所示剪開,恰好能拼成如圖2﹣2所示的矩形,則m的值是多少?
(3)四邊形ABCD是一個(gè)長(zhǎng)為7,寬為5的矩形(面積為35),若把它按如圖3﹣1所示的方式剪開,分成四部分,重新拼成如圖3﹣2所示的圖形,得到一個(gè)長(zhǎng)為9,寬為4的矩形(面積為36).問:重新拼成的圖形的面積為什么會(huì)增加?請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰三角形中,,作交AB于點(diǎn)M,交AC于點(diǎn)N.
(1)在圖1中,求證:;
(2)在圖2中的線段CB上取一動(dòng)點(diǎn)P,過P作交CM于點(diǎn)E,作交BN于點(diǎn)F,求證:;
(3)在圖3中動(dòng)點(diǎn)P在線段CB的延長(zhǎng)線上,類似(2)過P作交CM的延長(zhǎng)線于點(diǎn)E,作交NB的延長(zhǎng)線于點(diǎn)F,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點(diǎn),兩點(diǎn),與y軸交于點(diǎn)C,.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)過點(diǎn)A作,垂足為M,求證:四邊形ADBM為正方形;
(3)點(diǎn)P為拋物線在直線BC下方圖形上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo);
(4)若點(diǎn)Q為線段OC上的一動(dòng)點(diǎn),問:是否存在最小值?若存在,求岀這個(gè)最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解七、八年級(jí)學(xué)生一分鐘跳繩情況,從這兩個(gè)年級(jí)隨機(jī)抽取名學(xué)生進(jìn)行測(cè)試,并對(duì)測(cè)試成績(jī)(一分鐘跳繩次數(shù))進(jìn)行整理、描述和分析,下面給出了部分信息:
七年級(jí)學(xué)生一分鐘跳繩成績(jī)頻數(shù)分布直方圖
七、八年級(jí)學(xué)生一分鐘跳繩成績(jī)分析表
七年級(jí)學(xué)生一分鐘跳繩成績(jī)(數(shù)據(jù)分組:)在這一組的是:
根據(jù)以上信息,回答下列問題:
表中 ;
在這次測(cè)試中,七年級(jí)甲同學(xué)的成績(jī)次,八年級(jí)乙同學(xué)的成績(jī),他們的測(cè)試成績(jī),在各自年級(jí)所抽取的名同學(xué)中,排名更靠前的是 (填“甲”或“乙”),理由是 .
該校七年級(jí)共有名學(xué)生,估計(jì)一分鐘跳繩不低于次的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=60°,OC是∠AOB的平分線,點(diǎn)D為OC上一點(diǎn),過D作直線DE⊥OA,垂足為點(diǎn)E,且直線DE交OB于點(diǎn)F,如圖所示.若DE=2,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的對(duì)角線長(zhǎng)為,周長(zhǎng)為.若反比例函數(shù)的圖象經(jīng)過矩形頂點(diǎn).
求反比例函數(shù)解析式;若點(diǎn)和在反比例函數(shù)的圖象上,試比較與的大;
若一次函數(shù)的圖象過點(diǎn)并與軸交于點(diǎn),求出一次函數(shù)解析式,并直接寫出成立時(shí),對(duì)應(yīng)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P在⊙O外,PC是⊙O的切線,C為切點(diǎn),直線PO與⊙O相交于點(diǎn)A、B.
(1)若∠A=30°,求證:PA=3PB;
(2)小明發(fā)現(xiàn),∠A在一定范圍內(nèi)變化時(shí),始終有∠BCP=(90°﹣∠P)成立.請(qǐng)你寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),AE∥CD,CE∥AB,連接DE交AC于點(diǎn)O.
(1)證明:四邊形ADCE為菱形.
(2)BC=6,AB=10,求菱形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ADBC內(nèi)接于⊙O,AD平分∠EDC,AE∥BC交直線BD于E.
(1)求證:AE是⊙O的切線;
(2)若CD為直徑,tan∠ADE=2,求sin∠BDC的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com