【題目】1)如圖1,在平行四邊形ABCD中,∠A30°,AB6,AD8,將平行四邊形ABCD分割成兩部分,然后拼成一個(gè)矩形,請(qǐng)畫出拼成的矩形,并說明矩形的長(zhǎng)和寬.(保留分割線的痕跡)

2)若將一邊長(zhǎng)為1的正方形按如圖21所示剪開,恰好能拼成如圖22所示的矩形,則m的值是多少?

3)四邊形ABCD是一個(gè)長(zhǎng)為7,寬為5的矩形(面積為35),若把它按如圖31所示的方式剪開,分成四部分,重新拼成如圖32所示的圖形,得到一個(gè)長(zhǎng)為9,寬為4的矩形(面積為36).問:重新拼成的圖形的面積為什么會(huì)增加?請(qǐng)說明理由.

【答案】1)如圖所示,見解析;(2m的值為;(3)重新拼成的圖形的面積會(huì)增加,理由見解析.

【解析】

1)過DDEBCE,將△CDE進(jìn)行平移即可求解;

2)根據(jù)相似三角形的性質(zhì)即可求解;

3)根據(jù)相似三角形的性質(zhì)即可求解.

1)如圖所示:

2)依題意有:,

解得:(負(fù)值舍去)

經(jīng)檢驗(yàn),是原方程的解.

m的值為;

3)∵,

∴直角三角形的斜邊與直角梯形的斜腰不在一條直線上,

故重新拼成的圖形的面積會(huì)增加.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形中,,作AB于點(diǎn)MAC于點(diǎn)N

1)在圖1中,求證:

2)在圖2中的線段CB上取一動(dòng)點(diǎn)P,過PCM于點(diǎn)E,作BN于點(diǎn)F,求證:;

3)在圖3中動(dòng)點(diǎn)P在線段CB的延長(zhǎng)線上,類似(2)過PCM的延長(zhǎng)線于點(diǎn)E,作NB的延長(zhǎng)線于點(diǎn)F,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),兩點(diǎn),與y軸交于點(diǎn)C,

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)過點(diǎn)A,垂足為M,求證:四邊形ADBM為正方形;

(3)點(diǎn)P為拋物線在直線BC下方圖形上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo);

(4)若點(diǎn)Q為線段OC上的一動(dòng)點(diǎn),問:是否存在最小值?若存在,求岀這個(gè)最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解七、八年級(jí)學(xué)生一分鐘跳繩情況,從這兩個(gè)年級(jí)隨機(jī)抽取名學(xué)生進(jìn)行測(cè)試,并對(duì)測(cè)試成績(jī)(一分鐘跳繩次數(shù))進(jìn)行整理、描述和分析,下面給出了部分信息:

七年級(jí)學(xué)生一分鐘跳繩成績(jī)頻數(shù)分布直方圖

七、八年級(jí)學(xué)生一分鐘跳繩成績(jī)分析表

七年級(jí)學(xué)生一分鐘跳繩成績(jī)(數(shù)據(jù)分組:)在這一組的是:

根據(jù)以上信息,回答下列問題:

表中   ;

在這次測(cè)試中,七年級(jí)甲同學(xué)的成績(jī)次,八年級(jí)乙同學(xué)的成績(jī),他們的測(cè)試成績(jī),在各自年級(jí)所抽取的名同學(xué)中,排名更靠前的是   (填),理由是   

該校七年級(jí)共有名學(xué)生,估計(jì)一分鐘跳繩不低于次的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB60°,OC是∠AOB的平分線,點(diǎn)DOC上一點(diǎn),過D作直線DEOA,垂足為點(diǎn)E,且直線DEOB于點(diǎn)F,如圖所示.若DE2,則DF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形的對(duì)角線長(zhǎng)為,周長(zhǎng)為.若反比例函數(shù)的圖象經(jīng)過矩形頂點(diǎn)

求反比例函數(shù)解析式;若點(diǎn)在反比例函數(shù)的圖象上,試比較的大;

若一次函數(shù)的圖象過點(diǎn)并與軸交于點(diǎn),求出一次函數(shù)解析式,并直接寫出成立時(shí),對(duì)應(yīng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)PO外,PCO的切線,C為切點(diǎn),直線POO相交于點(diǎn)A、B.

1)若∠A30°,求證:PA3PB

2)小明發(fā)現(xiàn),∠A在一定范圍內(nèi)變化時(shí),始終有∠BCP90°﹣∠P)成立.請(qǐng)你寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),AE∥CD,CE∥AB,連接DE交AC于點(diǎn)O.

(1)證明:四邊形ADCE為菱形.

(2)BC=6,AB=10,求菱形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ADBC內(nèi)接于⊙O,AD平分∠EDC,AEBC交直線BDE

1)求證:AE是⊙O的切線;

2)若CD為直徑,tanADE=2,求sinBDC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案