已知下列n(n為正整數(shù))個關(guān)于x的一元二次方程:
x2-1=0,
x2+x-2=0,
x2+2x-3=0,

x2+(n-1)x-n=0.
(1)請解上述一元二次方程;
(2)請你指出這n個方程的根具有什么共同特點,寫出一條即可.
考點:解一元二次方程-因式分解法,一元二次方程的解
專題:規(guī)律型
分析:(1)分別利用因式分解法解各方程;
(2)根據(jù)方程根的特征易得這n個方程都有一個根為1,另外一根等于常數(shù)項.
解答:解:(1)x2-1=0,解得x1=1,x2=-1,
x2+x-2=0,解得x1=1,x2=-2,
x2+2x-3=0,解得x1=1,x2=-3,
…x2+(n-1)x-n=0,解得x1=1,x2=-n;

(2)這n個方程都有一個根為1,另外一根等于常數(shù)項.
點評:本題考查了解一元二次方程-因式分解法:先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學轉(zhuǎn)化思想).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

若x=2是關(guān)于x的方程10-2x=ax的解,則a=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某工人在規(guī)定的時間內(nèi)做完一批零件,若每小時做10個就可以超額完成3個,若每小時做11個就可以提前1h完成,則這批零件一共有多少個?設(shè)這批零件一共有x個,則根據(jù)題意得到的正確方程是( 。
A、
x
10
-3=
x
11
+1
B、
x
10
-
10
3
=
x
11
-1
C、
x
10
+
3
10
=
x
11
-1
D、
x
10
+
3
10
=
x
11
+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若x=2是方程ax=4的解,則a的值為(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

初一年級利用寒假組織部分學生外出社會實踐,有10名家長代表隨團出行,甲旅行社說:“如果10名家長代表都買全票,則其余學生可享受半價優(yōu)惠”;乙旅行社說:“包括10名家長代表在內(nèi),全部按票價的六折優(yōu)惠(即按票價的60%收費)”,若全票價為a元(其中a>0),
(1)當a=60時,如果學生人數(shù)為30人,兩個旅行社收費各是多少元?
(2)有其中一學生說:“無論出行學生人數(shù)有多少,兩家旅行社的收費都不可能一樣.”你認為該說法對嗎?為什么?(運用計算加以說明)
(3)選擇哪個旅行社更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解下列不等式和不等式組
(1)2(x+1)>3x-4;                           
(2)
9x+5<8x+7
4
3
x+2>1-
2
3
x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將一副直角三角尺的直角頂點C疊放在一起.
(1)如圖1,若CE恰好是∠ACD的角平分線,則CD是∠ECB的
 
;
(2)如圖2,若∠ECD=α,CD在∠BCE的內(nèi)部,請你猜想∠ACE與∠DCB是否相等?并簡述理由;
(3)在(2)的條件下,請問∠ECD與∠ACB的和是多少?并簡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

列方程解應(yīng)用題:
12月份迎迎家長給她提供了168元午餐費.學校食堂提供兩種午餐:
用餐種類 自助餐 盒飯
價格(元/份) 8 6
為響應(yīng)學校為邊遠山區(qū)獻愛心的號召,迎迎從當月午餐費中取出了30元作為捐款.已知12月份她在學校吃了21次午餐,每天吃一份,午餐費剛好用完.問迎迎這個月的午餐吃了多少次盒飯?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一個幾何體由一些完全相同的小正方體搭成,請畫出從左面看、上面看的這個幾何體的形狀圖.

查看答案和解析>>

同步練習冊答案