【題目】如圖,在⊙中,AB是直徑,BC是弦,BC=BD,連接CD交⊙于點E,∠BCD=∠DBE.
(1)求證:BD是⊙的切線.
(2)過點E作EF⊥AB于F,交BC于G,已知DE=,EG=3,求BG的長.
【答案】(1)見解析;(2)BG的長為5.
【解析】
(1)連接AE,根據圓周角定理可得∠BAE=∠BCE,由AB是直徑可得∠AEB=90°,進而可得∠BAE+∠ABE=90°,由∠BCD=∠DBE.利用等量代換即可求出∠ABD=90°,可得BD是⊙O的切線;(2)延長EF交⊙O于H,根據垂徑定理可得,進而可得∠ECB=∠BEH,由∠EBC是公共角即可證明△EBC∽△GBE,根據相似三角形的性質可得,根據等腰三角形的性質可得∠D=∠BCE,利用等量代換可得∠D=∠DBE,可得BE=DE,由∠AFE=∠ABD=90°可得EF//BD,根據平行線性質可得∠D=∠CEF,即可證明∠BCE=∠CEF,可得CG=GE,即可得出BC=BG+EG,代入求出BG的長即可.
(1)如圖,連接AE,則∠BAE=∠BCE,
∵AB是直徑,
∴∠AEB=90°,
∴∠BAE+∠ABE=90°,
∴∠ABE+∠BCE=90°,
∵∠BCE=∠DBE,
∴∠ABE+∠DBE=90°,即∠ABD=90°,
∴BD是⊙O的切線.
(2)如圖,延長EF交⊙O于H,
∵EF⊥AB,AB是直徑,
∴,
∴∠ECB=∠BEH,
∵∠EBC=∠GBE,
∴△EBC∽△GBE,
∴,
∵BC=BD,
∴∠D=∠BCE,
∵∠BCE=∠DBE,
∴∠D=∠DBE,
∴BE=DE=,
∵∠AFE=∠ABD=90°,
∴BD∥EF,
∴∠D=∠CEF,
∴∠BCE=∠CEF,
∴CG=GE=3,
∴BC=BG+CG=BG+3,
∴,
∴BG=-8(舍)或BG=5,
即BG的長為5.
科目:初中數學 來源: 題型:
【題目】垃圾分類是對垃圾傳統(tǒng)收集處理方式的改變,是對垃圾進行有效處理的一種科學管理方法.為了增強同學們垃圾分類的意識,某班舉行了專題活動,對200件垃圾進行分類整理,得到下列統(tǒng)計圖表,請根據統(tǒng)計圖表回答問題:(其中A:可回收垃圾;B:廚余垃圾;C:有害垃圾;D:其它垃圾).
類別 | 件數 |
A | 70 |
B | b |
C | c |
D | 48 |
(1)________;________;
(2)補全圖中的條形統(tǒng)計圖;
(3)有害垃圾C在扇形統(tǒng)計圖中所占的圓心角為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每年夏季全國各地總有未成年人因溺水而喪失生命,令人痛心疾首.今年某校為確保學生安全,開展了“遠離溺水·珍愛生命”的防溺水安全知識競賽.現從該校七、八年級中各隨機抽取10名學生的競賽成績(百分制)進行整理、描述和分析(成績得分用表示,共分成四組:..C.D.),下面給出了部分信息:
七年級10名學生的競賽成績是:99,80,99,86,99,96,90,100,89,82
八年級10名學生的競賽成績在組中的數據是:94,90,94
八年級抽取的學生競賽成績扇形統(tǒng)計圖:
七、八年級抽取的學生競賽成績統(tǒng)計表:
年級 | 七年級 | 八年級 |
平均數 | 92 | |
中位數 | 93 | 94 |
眾數 | 99 | 100 |
方差 | 52 | 50.4 |
根據以上信息,解答下列問題:
(1)直接寫出上述圖表中的值;
(2)根據以上數據,你認為該校七、八年級學生掌握防溺水安全知識較好?請說明理由(一條理由即可);
(3)該校七、八年級共720人參加了此次競賽活動,估計參加此次競賽活動成績優(yōu)秀()的學生人數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“半日走遍江淮大地,安徽風景盡在徽園”,位于省會合肥的徽園景點某年三月共接待游客萬人,四月比三月旅游人數增加了,五月比四月游客人數增加了,已知三月至五月徽園的游客人數平均月增長率為,則可列方程為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AD是BC邊上的高,E是AC的中點,P是AD上的一個動點,當PC與PE的和最小時,∠CPE的度數是( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數=(≠0)圖象如圖所示,下列結論:①>0;②=0;③當≠1時,>;④>0;⑤若=,且≠,則=2.其中正確的有( )
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知,⊙O為△ABC的外接圓,BC為直徑,點E在AB上,過點E作EF⊥BC,點G在FE的延長線上,且GA=GE.
(1)求證:AG與⊙O相切.
(2)若AC=6,AB=8,BE=3,求線段OE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年我市將創(chuàng)建全國森林城市,提出了“共建綠色城”的倡議.某校積極響應,在3月12日植樹節(jié)這天組織全校學生開展了植樹活動,校團委對全校各班的植樹情況道行了統(tǒng)計,繪制了如圖所示的兩個不完整的統(tǒng)計圖.
(1)求該校的班級總數;
(2)將條形統(tǒng)計圖補充完整;
(3)求該校各班在這一活動中植樹的平均數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,點O是邊AC的中點,分別過點A、C作射線BO的垂線,E、F是垂足.
(1)如圖1,求證:四邊形AECF是平行四邊形;
(2)如圖2,若,,,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com