【題目】當值相同時,我們把正比例函數與反比例函數 叫做“關聯函數”,可以通過圖象研究“關聯函數”的性質.小明根據學習函數的經驗,先以與為例對“關聯函數”進行了探究.下面是小明的探究過程,請你將它補充完整.
(1)如圖,在同一坐標系中畫出這兩個函數的圖象.設這兩個函數圖象的交點分別為,,則點 的坐標為,點的坐標為_______;
(2)點是函數在第一象限內的圖象上一個動點(點不與點重合),設點的坐標為,其中且.
①結論:作直線,分別與軸交于點,,則在點運動的過程中,總有.
證明:設直線的解析式為,將點和點的坐標代入,得
解得 則直線的解析式為.
令 ,可得,則點的坐標為.
同理可求,直線的解析式為,點的坐標為________.
請你繼續(xù)完成證明的后續(xù)過程:
②結論:設的面積為,則是的函數.請你直接寫出與的函數表達式.
科目:初中數學 來源: 題型:
【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,
①寫出A、B、C的坐標.
②以原點O為對稱中心,畫出△ABC關于原點O對稱的△A1B1C1,并寫出A1、B1、C1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.一輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.
(1)若輪船照此速度與航向航向,何時到達海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請說明理由(參考數據: ≈1.4, ≈1.7).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:一次函數 的圖象與反比例函數的圖象交于點 ,.
(1)分別求出這兩個函數的表達式;
(2)直接寫出當一次函數的函數值大于反比例函數的函數值時, 的取值范圍為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著濟寧旅游業(yè)的快速發(fā)展,外來游客對住宿的需求明顯增大,某賓館擁有的床位數不斷增加。
(1)該賓館床位數從2016年底的200個增長到2018年底的242個,求該賓館這兩年(從2016年底到2018年底)擁有的床位數的年平均增長率。
(2)根據市場表現發(fā)現每床每日收費40元,242張床可全部租出,若每床每日收費提高10元,則租出床位減少20張。若想平均每天獲利11100元,同時又減輕游客的經濟負擔,每張床位應定價多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=12cm,BC=6cm,點P沿AB邊從點A開始向點B以2cm/s的速度移動,點Q沿DA邊從點D開始向點A以1cm/s的速度移動,如果P、Q同時出發(fā),用t(s)表示移動的時間(0≤t≤6),那么:
(1)當t為何值時,△QAP是等腰直角三角形?
(2)當t為何值時,以點Q、A、P為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,△ABC三個頂點分別是A(2,0)、B(0,4)、C(-3,0),把△ABC沿x軸向右平移4個單位,得到△A1B1C1.
(1)在圖中以黑點為原點建立平面直角坐標系,畫出△ABC和△A1B1C1;
(2)寫出A1、B1、C1各點的坐標;
(3)求△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com