【題目】如圖,直線y=kx+6與x軸、y軸分別交于點(diǎn)E、F,點(diǎn)E的坐標(biāo)為(﹣8,0),點(diǎn)A的坐標(biāo)為(﹣6,0).
(1)求k的值;
(2)若點(diǎn)P(x,y)是第二象限內(nèi)的直線上的一個動點(diǎn),在點(diǎn)P的運(yùn)動過程中,試寫出△OPA的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)探究:在(2)的情況下,當(dāng)點(diǎn)P運(yùn)動到什么位置時,△OPA的面積為,并說明理由.
【答案】(1)k= (2)﹣8<x<0(3)(﹣, )
【解析】試題分析:(1)將點(diǎn)E坐標(biāo)(-8,0)代入直線y=kx+6就可以求出k值,從而求出直線的解析式;
(2)由點(diǎn)A的坐標(biāo)為(-6,0)可以求出OA=6,求△OPA的面積時,可看作以OA為底邊,高是P點(diǎn)的縱坐標(biāo)的絕對值.再根據(jù)三角形的面積公式就可以表示出△OPA.從而求出其關(guān)系式;根據(jù)P點(diǎn)的移動范圍就可以求出x的取值范圍.
(3)根據(jù)△OPA的面積為代入(2)的解析式求出x的值,再求出y的值就可以求出P點(diǎn)的位置.
(1)∵點(diǎn)E(﹣8,0)在直線y=kx+6上,
∴0=﹣8k+6,
∴k=;
(2)∵k=,
∴直線的解析式為:y=x+6,
∵P點(diǎn)在y=x+6上,設(shè)P(x, x+6),
∴△OPA以O(shè)A為底的邊上的高是|x+6|,
當(dāng)點(diǎn)P在第二象限時,|x+6|=x+6,
∵點(diǎn)A的坐標(biāo)為(﹣6,0),
∴OA=6.
∴S==x+18.
∵P點(diǎn)在第二象限,
∴﹣8<x<0;
(3)設(shè)點(diǎn)P(m,n)時,其面積S=,
則,
解得|n|=,
則n1=或者n2=﹣(舍去),
當(dāng)n=時, =m+6,
則m=﹣,
故P(﹣,)時,三角形OPA的面積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點(diǎn)O,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:
①CF=AE;②OE=OF;③圖中共有四對全等三角形;④四邊形ABCD是平行四邊形;其中正確結(jié)論的是_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運(yùn)動,某縣城區(qū)四校決定聯(lián)合購買一批足球運(yùn)動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費(fèi)用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費(fèi)用;
(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B兩個村莊的坐標(biāo)分別為(2,2)、(7,4),一輛汽車從原點(diǎn)O出發(fā),在x軸上行駛.
(1)汽車行駛到什么位置時離村莊A最近?寫出此位置的坐標(biāo).
(2)汽車行駛到什么位置時離村莊B最近?寫出此位置的坐標(biāo).
(3)請在圖中畫出汽車到兩村莊的距離和最短的位置,并求出此最短的距離和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是給定△ABC邊AB上一動點(diǎn),D是CP的延長線上一點(diǎn),且2DP=PC,連結(jié)DB,動點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動到終點(diǎn)A,則△APC與△DBP面積的差的變化情況是( )
A.始終不變
B.先減小后增大
C.一直變大
D.一直變小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=k1x+b與雙曲線y=相交于A(1,2)、B(m,-1)兩點(diǎn).
(1)求直線和雙曲線的解析式;
(2)若A1(x1,y1)、A2(x2,y2)、A3(x3,y3)為雙曲線上的三點(diǎn),且x1<x2<0<x3,請直接寫出y1、y2、y3的大小關(guān)系式;
(3)觀察圖象,請直接寫出不等式k1x+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點(diǎn)落在對角線D′處.若AB=3,AD=4,則ED的長為( )
A. B. 3 C. 1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?”這段話摘自《九章算術(shù)》,意思是說:如圖,矩形城池ABCD,東邊城墻AB長9里,南邊城墻AD長7里,東門點(diǎn)E、南門點(diǎn)F分別是AB,AD的中點(diǎn),EG⊥AB,F(xiàn)H⊥AD,EG=15里,HG經(jīng)過A點(diǎn),則FH=里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又余下一個四邊形,稱為第二次操作;……依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形.如圖1,□ABCD中,若AB=1,BC=2,則□ABCD為1階準(zhǔn)菱形.
(1)判斷與推理:
①鄰邊長分別為2和3的平行四邊形是 階準(zhǔn)菱形;
②小明為了剪去一個菱形,進(jìn)行如下操作:如圖2,把□ABCD沿BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC邊上的點(diǎn)F,得到四邊形ABFE.請證明四邊形ABEF是菱形.
(2)操作、探究與計算:
①已知□ABCD是鄰邊長分別為1,a(a>1),且是3階準(zhǔn)菱形,請畫出□ABCD及裁剪線的示意圖,并在圖形下方寫出a的值;
②已知□ABCD的鄰邊長分別為a,b(a>b),滿足a=6b+r,b=5r(r>0),則□ABCD
是 階準(zhǔn)菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com