【題目】如圖,已知軸上的點,且,分別過點軸的垂線交反比例函數(shù)的圖象于點,過點于點,過點于點……的面積為,的面積為……的面積為,則等于_________

【答案】

【解析】

OA1=A1A2=A2A3=…=AnAn+1=1可知B1點的坐標為(1,y1),B2點的坐標為(2,y2),B3點的坐標為(3,y3Bn點的坐標為(nyn),Bn+1點的坐標為(n+1yn+1),把x=1,x=2x=3代入反比例函數(shù)的解析式即可求出y1、y2、y3的值,再由三角形的面積公式可得出S1S2、S3Sn的值,故可得出結(jié)論.

解:∵OA1=A1A2=A2A3=…=AnAn+1=1,

∴設B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn),Bn+1n+1,yn+1),

B1,B2,B3Bn,Bn+1在反比例函數(shù)的圖象上,

y1=1,y2=,y3=,,yn=,yn+1=,

S1=×1×(y1y2)=×1×(1)=(1)

S2=×1×(y2y3)=×();

S3=×1×(y3y4)= ×()

Sn= (),

S1+S2+S3+…+Sn=(1+++…+)=(1-)=.

故答案為:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明調(diào)查了班級里20位同學本學期購買課外書的花費情況,并將結(jié)果繪制成了如圖的統(tǒng)計圖.在這20位同學中,本學期購買課外書的花費的眾數(shù)和中位數(shù)分別是( 。

A. 50,50 B. 50,30 C. 80,50 D. 30,50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉淇正在參加全國數(shù)學競賽,只要他再答對最后兩道單選題就能順利過關(guān),其中第一道題有3個選項,第二道題有4個選項,而這兩道題嘉淇都不會,不過嘉淇還有一次求助沒有使用(使用求助可讓主持人去掉其中一題的一個錯誤選項).

1)如果嘉淇第一題不使用求助,隨機選擇一個選項,那么嘉淇答對第一道題的概率是多少?

2)若嘉淇將求助留在第二題使用,請用畫樹狀圖或列表法求嘉淇能順利過關(guān)的概率;

3)請你從概率的角度分析,建議嘉洪在第幾題使用求助,才能使他過關(guān)的概率較大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年我市為創(chuàng)評全國文明城市稱號,周末團市委組織志愿者進行宣傳活動.班主任崔老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽方式確定2名女生去參加.抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,崔老師先從中隨機抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機抽取第二張,記下姓名.[規(guī)定:小悅、小惠、小艷和小倩的姓名分別記作:A、B、C、D]

1小悅被抽中 事件(填不可能必然隨機);第一次抽取卡片小悅被抽中的概率為 ;

2)試用畫樹狀圖或列表的方法求出小惠被抽中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=8厘米,AC=16厘米,點PA出發(fā),以每秒2厘米的速度向B運動,點QC同時出發(fā),以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應停止運動,設運動的時間為t

⑴用含t的代數(shù)式表示:AP=   AQ=   

⑵當以A,PQ為頂點的三角形與ABC相似時,求運動時間是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠B90°,∠C60°,BCCD8,將四邊形ABCD折疊,使點C與點A重合,折痕為EF,則BE的長為( 。

A. 1B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線Ly=x+2x軸、y軸分別交于A、B兩點,在y軸上有一點N0,4),動點MA點以每秒1個單位的速度勻速沿x軸向左移動.

1)點A的坐標:_____;點B的坐標:_____

2)求NOM的面積SM的移動時間t之間的函數(shù)關(guān)系式;

3)在y軸右邊,當t為何值時,NOMAOB,求出此時點M的坐標;

4)在(3)的條件下,若點G是線段ON上一點,連結(jié)MG,MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,相鄰兩條平行直線之間的距離相等,等腰直角三角形中, ,三角形的三個頂點分別在這三條平行直線上,則的值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=﹣x2x+2與x軸交于點A,B兩點,交y軸于C點,拋物線的對稱軸與x軸交于H點,分別以OC、OA為邊作矩形AECO

(1)求直線AC的解析式;

(2)如圖2,P為直線AC上方拋物線上的任意一點,在對稱軸上有一動點M,當四邊形AOCP面積最大時,求|PMOM|的最大值.

(3)如圖3,將△AOC沿直線AC翻折得△ACD,再將△ACD沿著直線AC平移得△A'CD'.使得點A′、C'在直線AC上,是否存在這樣的點D′,使得△AED′為直角三角形?若存在,請求出點D′的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案