【題目】(本題滿分10分)(1)問題發(fā)現(xiàn)

如圖1,ACB和DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE,

填空:AEB的度數(shù)為

線段AD、BE之間的數(shù)量關(guān)系是

(2)拓展探究

如圖2,ACB和DCE均為等腰直角三角形,ACB=DCE=900, 點(diǎn)A、D、E在同一直線上,CM為DCE中DE邊上的高,連接BE.請(qǐng)判斷AEB的度數(shù)及線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.

(3)解決問題如圖3,在正方形ABCD中,CD=.若點(diǎn)P滿足PD=1,且BPD=900,請(qǐng)直接寫出點(diǎn)A到BP的距離.

【答案】(1)60;AD=BE;(2)AEB=900;AE=2CM+BE,理由見試題解析;(3)

【解析】

試題分析(1)由條件易證ACD≌△BCE,從而得到:AD=BE,ADC=BEC.由點(diǎn)A,D,E在同一直線上可求出ADC,從而可以求出AEB的度數(shù).

(2)仿照(1)中的解法可求出AEB的度數(shù),證出AD=BE;由DCE為等腰直角三角形及CM為DCE中DE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE.

(3)由PD=1可得:點(diǎn)P在以點(diǎn)D為圓心,1為半徑的圓上;由BPD=90°可得:點(diǎn)P在以BD為直徑的圓上.顯然,點(diǎn)P是這兩個(gè)圓的交點(diǎn),由于兩圓有兩個(gè)交點(diǎn),接下來需對(duì)兩個(gè)位置分別進(jìn)行討論.然后,添加適當(dāng)?shù)妮o助線,借助于(2)中的結(jié)論即可解決問題.

試題解析:(1)如圖1,

∵△ACB和DCE均為等邊三角形,CA=CB,CD=CE,ACB=DCE=60°.∴∠ACD=BCE.

ACD和BCE中,AC=BC,ACD=BCE,CD=CE,

∴△ACD≌△BCE(SAS)∴∠ADC=BEC.

∵△DCE為等邊三角形,∴∠CDE=CED=60°.

點(diǎn)A,D,E在同一直線上,∴∠ADC=120°,∴∠BEC=120°∴∠AEB=BEC﹣CED=60°.

故答案為:60°.

②∵△ACD≌△BCE,AD=BE.故答案為:AD=BE.

(2)AEB=90°,AE=BE+2CM.

理由:如圖2,

∵△ACB和DCE均為等腰直角三角形,CA=CB,CD=CE,ACB=DCE=90°,∴∠ACD=BCE.

ACD和BCE中,CA=CB,ACD=BCE,CD=CE,∴△ACD≌△BCE(SAS),

AD=BE,ADC=BEC.

∵△DCE為等腰直角三角形,∴∠CDE=CED=45°.

點(diǎn)A,D,E在同一直線上,∴∠ADC=135°∴∠BEC=135°,∴∠AEB=BEC﹣CED=90°.

CD=CE,CMDE,DM=ME

∵∠DCE=90°,DM=ME=CMAE=AD+DE=BE+2CM.

(3)PD=1,點(diǎn)P在以點(diǎn)D為圓心,1為半徑的圓上.

∵∠BPD=90°,點(diǎn)P在以BD為直徑的圓上,點(diǎn)P是這兩圓的交點(diǎn).

當(dāng)點(diǎn)P在如圖3所示位置時(shí),

連接PD、PB、PA,作AHBP,垂足為H,

過點(diǎn)A作AEAP,交BP于點(diǎn)E,如圖3

四邊形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,BAD=90°,BD=2.

DP=1,BP=

A、P、D、B四點(diǎn)共圓,∴∠APB=ADB=45°∴△PAE是等腰直角三角形.

∵△BAD是等腰直角三角形,點(diǎn)B、E、P共線,AHBP,由(2)中的結(jié)論可得:BP=2AH+PD.

=2AH+1,AH=

當(dāng)點(diǎn)P在如圖3所示位置時(shí),

連接PD、PB、PA,作AHBP,垂足為H,

過點(diǎn)A作AEAP,交PB的延長(zhǎng)線于點(diǎn)E,如圖3

同理可得:BP=2AH﹣PD,=2AH﹣1,AH=

綜上所述:點(diǎn)A到BP的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( 。

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B90°AC12,∠A60°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長(zhǎng)的速度向A點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)DE運(yùn)動(dòng)的時(shí)間是t秒(t0).過點(diǎn)DDFBC于點(diǎn)F,連接DE、EF

1AB的長(zhǎng)是   

2)在DE的運(yùn)動(dòng)過程中,線段EFAD的關(guān)系是否發(fā)生變化?若不變化,那么線段EFAD是何關(guān)系,并給予證明;若變化,請(qǐng)說明理由.

3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 稱為第 1 個(gè)三角形,它的周長(zhǎng)是 1,以它的三邊中點(diǎn)為頂點(diǎn)組成第 2 個(gè)三角形,再以第 2 個(gè)三角形的三邊中點(diǎn)為頂點(diǎn)組成第 3 個(gè)三角形,以此類推,則第 2019 個(gè)三角形的周長(zhǎng)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長(zhǎng)為1 的正方體搭成的立體圖形,第(1)個(gè)圖形由1個(gè)正方體搭成,第(2)個(gè)圖形由4個(gè)正方體搭成,第(3)個(gè)圖形由10個(gè)正方體搭成,以此類推,搭成第(6)個(gè)圖形所需要的正方體個(gè)數(shù)是(

A.84個(gè)B.56個(gè)C.37個(gè)D.36個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組在活動(dòng)課上測(cè)量學(xué)校旗桿的高度.已知小亮站著測(cè)量,眼睛與地面的距離(AB)是1.7米,看旗桿頂部E的仰角為30°;小敏蹲著測(cè)量,眼睛與地面的距離(CD)是0.7米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點(diǎn)B、D、F在同一直線上).

(1)求小敏到旗桿的距離DF.(結(jié)果保留根號(hào))

(2)求旗桿EF的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵(lì)學(xué)生參加體育鍛煉,學(xué)校計(jì)劃拿出不超過3200元的資金購(gòu)買一批籃球和

排球,已知籃球和排球的單價(jià)比為3:2,單價(jià)和為160.

1)籃球和排球的單價(jià)分別是多少元?

2)若要求購(gòu)買的籃球和排球的總數(shù)量是36個(gè),且購(gòu)買的排球數(shù)少于11個(gè),有哪幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)D是拋物線 的頂點(diǎn),拋物線與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè))

(1)求點(diǎn)A,B的坐標(biāo);

(2)若M為對(duì)稱軸與x軸交點(diǎn),且DM=2AM,求拋物線表達(dá)式;

(3)當(dāng)30°<ADM<45°時(shí),求a的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案