已知拋物線y=ax2+x+2.
1.當(dāng)a=-1時,求此拋物線的頂點坐標(biāo)和對稱軸
2.若代數(shù)式-x2+x+2的值為正整數(shù),求x的值;
3.若a是負(fù)數(shù)時,當(dāng)a=a1時,拋物線y=ax2+x+2與x軸的正半軸相交于點M(m,0);當(dāng)a=a2時,拋物線y=ax2+x+2與x軸的正半軸相交于點N(n,0). 若點M在點N的左邊,試比較a1與a2的大小.
1.當(dāng)a=-1時,y=-x2+x+2,∴a=-1,b=1,c=2.
∴拋物線的頂點坐標(biāo)為(,),對稱軸為直線x=.……2分
2.∵代數(shù)式-x2+x+2的值為正整數(shù),∴函數(shù)y=-x2+x+2的值為正整數(shù).
又因為函數(shù)的最大值為,∴y的正整數(shù)值只能為1或2.
當(dāng)y=1時,-x2+x+2=1,解得,…………3分
當(dāng)y=2時,-x2+x+2=2,解得x3=0,x4=1.……………4分
∴x的值為,,0或1.
3.當(dāng)a<0時,即a1<0,a2<0.
經(jīng)過點M的拋物線y=a1x2+x+2的對稱軸為,
經(jīng)過點N的拋物線y=a2x2+x+2的對稱軸為.…………5分
∵點M在點N的左邊,且拋物線經(jīng)過點(0,2)
∴直線在直線的左側(cè)……………6分
∴<.
∴a1<a2.…………………………………………………………7分
【解析】(1)根據(jù)二次函數(shù)的頂點坐標(biāo)和對稱軸公式求解。
(2)根據(jù)函數(shù)最大值求得x的值。
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線y=ax2+bx+c(a>0)經(jīng)過點B(12,0)和C(0,-6),對稱軸為x=2.
(1)求該拋物線的解析式.
(2)點D在線段AB上且AD=AC,若動點P從A出發(fā)沿線段AB以每秒1個單位長度的速度勻速運(yùn)動,同時另一個動點Q以某一速度從C出發(fā)沿線段CB勻速運(yùn)動,問是否存在某一時刻,使線段PQ被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點Q的運(yùn)動速度;若存在,請說明理由.
(3)在(2)的結(jié)論下,直線x=1上是否存在點M,使△MPQ為等腰三角形?若存在,請求出所有點M的坐
標(biāo);若存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆山東鄒城北宿中學(xué)九年級3月月考數(shù)學(xué)試卷(帶解析) 題型:解答題
已知拋物線y=ax2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點,與x軸交于另一點B.
(1)求拋物線的解析式;
(2)若點D(m,m+1)在第一象限的拋物線上, 求點D關(guān)于直線BC對稱的點的坐標(biāo);
(3)在(2)的條件下,連結(jié)BD,若點P為拋物線上一點,且∠DBP=45°,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011年浙江省嵊州市九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分14分)
如圖,已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3)。設(shè)拋物線的頂點為D,求解下列問題:
1.(1)求拋物線的解析式和D點的坐標(biāo);
2.(2)過點D作DF∥軸,交直線BC于點F,求線段DF的長,并求△BCD的面積;
3.(3)能否在拋物線上找到一點Q,使△BDQ為直角三角形?若能找到,試寫出Q點的坐標(biāo);若不能,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com