(本小題滿分14分)
如圖,已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3)。設拋物線的頂點為D,求解下列問題:
1.(1)求拋物線的解析式和D點的坐標;
2.(2)過點D作DF∥軸,交直線BC于點F,求線段DF的長,并求△BCD的面積;
3.(3)能否在拋物線上找到一點Q,使△BDQ為直角三角形?若能找到,試寫出Q點的坐標;若不能,請說明理由。
1.解:(1)設拋物線的解析式為
把(0,3)代入,解得,
解析式為-----------------------2分
則點的坐標為(1,4)-----------------------2分
2.(2)設直線BC的解析式為,把B(3,0)代入,
解得,所以
∴DF= -----------------------2分
△BCD的面積= --------------2分
3.(3)①點即在拋物線上,CD=,BC=,。
∵,,∴ ∴,
這時與點重合點坐標為----------------------------------2分
②如圖(4),若為,作QF⊥軸于,
軸于
可證
有
則點坐標
即
化簡為
即
解之為或
由得坐標:----------2分
③若為
如圖(5),延長交軸于,
作軸于,
軸于
可證明
即
則
得,
解法(1)過Q作QG∥軸交DE于點G,∴,,
∴, ,解得(舍去),
代入解得,為
解法(2)點的坐標為
所在的直線方程為
則與的解為,得交點坐標為···················· 2分
即滿足題意的點有三個,,
【解析】略
科目:初中數(shù)學 來源: 題型:
25.(本小題滿分14分)
如圖13,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C(0,-1),ΔABC的面積為。
(1)求該二次函數(shù)的關系式;
(2)過y軸上的一點M(0,m)作y軸上午垂線,若該垂線與ΔABC的外接圓有公共點,求m的取值范圍;
(3)在該二次函數(shù)的圖象上是否存在點D,使四邊形ABCD為直角梯形?若存在,求出點D的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+m(m為常數(shù))
經(jīng)過點(0,4).
(1) 求m的值;
(2) 將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設為直線l2)與平移前的拋物線的對稱軸(設為直線l1)關于y軸對稱;它所對應的函數(shù)的最小值為-8.
① 試求平移后的拋物線的解析式;
② 試問在平移后的拋物線上是否存在點P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點P的坐標,并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011年廣東省蘿崗區(qū)初中畢業(yè)班綜合測試數(shù)學卷 題型:解答題
(本小題滿分14分)
如圖1,拋物線與y軸交于點A,E(0,b)為y軸上一動點,過點E的直線與拋物線交于點B、C.
【小題1】(1)求點A的坐標;
【小題2】(2)當b=0時(如圖2),求與的面積。
【小題3】(3)當時,與的面積大小關系如何?為什么?
【小題4】(4)是否存在這樣的b,使得是以BC為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(內蒙古赤峰卷)數(shù)學 題型:解答題
(2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+m(m為常數(shù))
經(jīng)過點(0,4).
(1) 求m的值;
(2) 將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設為直線l2)與平移前的拋物線的對稱軸(設為直線l1)關于y軸對稱;它所對應的函數(shù)的最小值為-8.
① 試求平移后的拋物線的解析式;
② 試問在平移后的拋物線上是否存在點P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點P的坐標,并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com