【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.

(1)請你補全這個輸水管道的圓形截面;
(2)若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

【答案】
(1)解:先作弦AB的垂直平分線;在弧AB上任取一點C連接AC,作弦AC的垂直平分線,兩線交點作為圓心O,OA作為半徑,畫圓即為所求圖形.


(2)解:過O作OE⊥AB于D,交弧AB于E,連接OB.

∵OE⊥AB

∴BD= AB= ×16=8cm

由題意可知,ED=4cm

設半徑為xcm,則OD=(x﹣4)cm

在Rt△BOD中,由勾股定理得:

OD2+BD2=OB2

∴(x﹣4)2+82=x2

解得x=10.

即這個圓形截面的半徑為10cm


【解析】如圖所示,根據(jù)垂徑定理得到BD= AB= ×16=8cm,然后根據(jù)勾股定理列出關于圓形截面半徑的方程求解.
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和垂徑定理的推論的相關知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條;推論2 :圓的兩條平行弦所夾的弧相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,以AB為直徑的⊙OBC于點D,CD=BD,過點D作⊙O的切線交邊AC于點F,交AB的延長線于點E

1)求證:EFAC

2)若AF=9,EF=12,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,我國漁政船在釣魚島海域C處測得釣魚島A在漁政船的北偏西30。的方向上,隨后漁政船以80海里/小時的速度向北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在漁政船的北偏西60°的方向上,求此時漁政船距釣魚島A的距離姓B.(結果保留小數(shù)點后一位,其中1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店銷售一批襯衣,每件進價250元,開始以每件400元的價格銷售,每星期能賣出20件,后來因庫存積壓,決定降價銷售,經(jīng)過兩次降價后每件售價為324元,求每次降價的百分率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若|3a+2b|+(b﹣3)2=0,則a﹣b=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于任意實數(shù)x,點P(x,x2﹣4x)一定不在第象限.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

通過整式運算一章的學習,我們發(fā)現(xiàn)要驗證一個結論的正確性可以有兩種方法:

例如:要驗證結論

方法1:幾何圖形驗證:如下圖,我們可以將一個邊長為(a+b)的正方形上裁去一個邊長為(a-b)的小正方形則剩余圖形的面積為4ab,驗證該結論正確。

方法2:代數(shù)法驗證:等式左邊=,

所以,左邊=右邊,結論成立。

觀察下列各式:

(1)按規(guī)律,請寫出第n個等式________________;

(2)試分別用兩種方法驗證這個結論的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知直線AC的函數(shù)解析式為y= x+8,點P從點A開始沿AO方向以1個單位/秒的速度運動,點Q從O點開始沿OC方向以2個單位/秒的速度運動.如果P、Q兩點分別從點A、點O同時出發(fā),經(jīng)過多少秒后能使△POQ的面積為8個平方單位?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:(m+1)(m﹣9)+8m=

查看答案和解析>>

同步練習冊答案