【題目】如圖,點(diǎn)P是邊長為的正方形ABCD的對角線BD上的動點(diǎn),過點(diǎn)P分別作PEBC于點(diǎn)E,PFDC于點(diǎn)F,連接AP并延長,交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EFAH于點(diǎn)G,當(dāng)點(diǎn)PBD上運(yùn)動時(不包括B、D兩點(diǎn)),以下結(jié)論中:①MF=MC;AHEF;AP2=PMPH;EF的最小值是.其中正確結(jié)論是( 。

A. ①③ B. ②③ C. ②③④ D. ②④

【答案】B

【解析】①錯誤.因?yàn)楫?dāng)點(diǎn)PBD中點(diǎn)重合時,CM=0,顯然FMCM;

②正確.連接PCEFO.根據(jù)對稱性可知∠DAP=DCP,

∵四邊形PECF是矩形,

OF=OC,

∴∠OCF=OFC,

∴∠OFC=DAP,

∵∠DAP+∠AMD=90°,

∴∠GFM+∠AMD=90°,

∴∠FGM=90°,

AHEF.

③正確.∵ADBH,

∴∠DAP=H,

∵∠DAP=PCM,

∴∠PCM=H,

∵∠CPM=HPC,

∴△CPM∽△HPC,

=

PC2=PMPH,

根據(jù)對稱性可知:PA=PC,

PA2=PMPH.

④正錯誤.∵四邊形PECF是矩形,

EF=PC,

∴當(dāng)CPBD時,PC的值最小,此時A、P、C共線,

AC=2,

PC的最小值為1,

EF的最小值為1;

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)探究活動課中,某同學(xué)有一塊矩形紙片,已知,,為射線上的一個動點(diǎn),將沿折疊得到,若是直角三角形,則所有符合條件的點(diǎn)所對應(yīng)的的和為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知我們把任意形如的五位自然數(shù)其中,,稱之為喜馬拉雅數(shù),例如在自然數(shù),,所以就是一個喜馬拉雅數(shù).并規(guī)定能被自然數(shù)整除的最大的喜馬拉雅數(shù)記為能被自然數(shù)整除的最小的喜馬拉雅數(shù)記為

(1)求證任意一個喜馬拉雅數(shù)都能被3整除;

(2)的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象分別與x軸,y軸的正半軸分別交于點(diǎn)AB,AB=2,∠OAB=45°

1)求一次函數(shù)的解析式;

2)如果在第二象限內(nèi)有一點(diǎn)C(a,);試用含有a的代數(shù)式表示四邊形ABCO的面積,并求出當(dāng)ABC的面積與ABO的面積相等時a的值;

3)在x軸上,是否存在點(diǎn)P,使PAB為等腰三角形?若存在,請直接寫出所有符合條件的點(diǎn)P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校要開展校園藝術(shù)節(jié)活動,為了合理編排節(jié)目,對學(xué)生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

請根據(jù)圖中信息,回答下列問題:

1)本次共調(diào)查了_________名學(xué)生.

2)在扇形統(tǒng)計(jì)圖中,“歌曲”所在扇形的圓心角等于_________度.

3)補(bǔ)全條形統(tǒng)計(jì)圖(并標(biāo)注頻數(shù)).

4)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛小品的人數(shù)約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中,m的值是 ;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點(diǎn),圓心在AC上,∠A=30°,D 的中點(diǎn).

(1)求證:AB=BC;

(2)求證:四邊形BOCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名運(yùn)動員進(jìn)行長跑訓(xùn)練,兩人距終點(diǎn)的路程(米)與跑步時間(分)之間的函數(shù)關(guān)系如圖所示,根據(jù)圖象所提供的信息解答問題:

1)他們在進(jìn)行 米的長跑訓(xùn)練,在0<<15的時間內(nèi),速度較快的人是 (填);

2)求乙距終點(diǎn)的路程(米)與跑步時間(分)之間的函數(shù)關(guān)系式;

3)當(dāng)=15時,兩人相距多少米?

4)在15<<20的時間段內(nèi),求兩人速度之差.

查看答案和解析>>

同步練習(xí)冊答案