【題目】如圖,AB是圓O的直徑,AB=8,點(diǎn)M在圓O上,∠MOB=60°,N是的中點(diǎn),P為AB上一動(dòng)點(diǎn),則PM+PN的最小值是_____.
【答案】4.
【解析】
作點(diǎn)M關(guān)于AB的對(duì)稱(chēng)點(diǎn)M',連接NM',交AB于點(diǎn)P,此時(shí)PM+PN有最小值,連接ON,OM,利用垂徑定理,求出∠M'OB=∠MOB=60°,進(jìn)一步求出∠NOM'=90°,在等腰直角三角形NOM'中求出NM'的長(zhǎng)度即可.
解:如圖,作點(diǎn)M關(guān)于AB的對(duì)稱(chēng)點(diǎn)M',連接NM',交AB于點(diǎn)P,此時(shí)PM+PN有最小值,
連接ON,OM,
則OB垂直平分MM',,
∴∠M'OB=∠MOB=60°,
∵N是的中點(diǎn),
∴,
∴∠MON=∠BON=∠MOB=30°,
∴∠NOM'=∠NOB+∠M'OB=90°,
∵AB=8,
∴ON=OM'=4,
在等腰Rt△ONM'中,
NM'=ON=4,
∵MP=M'P,
∴MP+NP=M'N=4,
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)專(zhuān)賣(mài)店經(jīng)銷(xiāo)某種型號(hào)的汽車(chē).已知該型號(hào)汽車(chē)的進(jìn)價(jià)為萬(wàn)元/輛,經(jīng)銷(xiāo)一段時(shí)間后發(fā)現(xiàn):當(dāng)該型號(hào)汽車(chē)售價(jià)定為萬(wàn)元/輛時(shí),平均每周售出輛;售價(jià)每降低萬(wàn)元,平均每周多售出輛.
(1)當(dāng)售價(jià)為萬(wàn)元/輛時(shí),平均每周的銷(xiāo)售利潤(rùn)為_(kāi)__________萬(wàn)元;
(2)若該店計(jì)劃平均每周的銷(xiāo)售利潤(rùn)是萬(wàn)元,為了盡快減少庫(kù)存,求每輛汽車(chē)的售價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)()的圖象如圖所示,下列結(jié)論:①;②;③;④;其中正確的說(shuō)法有__________(寫(xiě)出正確說(shuō)法的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是AD的中點(diǎn),F是AB邊上一點(diǎn),BF=3AF,則下列四個(gè)結(jié)論:
①△AEF∽△DCE;
②CE平分∠DCF;
③點(diǎn)B、C、E、F四個(gè)點(diǎn)在同一個(gè)圓上;
④直線(xiàn)EF是△DCE的外接圓的切線(xiàn);
其中,正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】街道旁邊有一根電線(xiàn)桿AB和一塊半圓形廣告牌,有一天,小明突然發(fā)現(xiàn),在太陽(yáng)光照射下,電線(xiàn)桿的頂端A的影子剛好落在半圓形廣告牌的最高處G,而半圓形廣告牌的影子剛好落在地面上一點(diǎn)E,已知BC=5米,半圓形的直徑為6米,DE=2米.求電線(xiàn)桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把函數(shù)C1:y=ax2﹣2ax﹣3a(a≠0)的圖象繞點(diǎn)P(m,0)旋轉(zhuǎn)180°,得到新函數(shù)C2的圖象,我們稱(chēng)C2是C1關(guān)于點(diǎn)P的相關(guān)函數(shù).C2的圖象的對(duì)稱(chēng)軸與x軸交點(diǎn)坐標(biāo)為(t,0).
(1)填空:t的值為 (用含m的代數(shù)式表示)
(2)若a=﹣1,當(dāng)≤x≤t時(shí),函數(shù)C1的最大值為y1,最小值為y2,且y1﹣y2=1,求C2的解析式;
(3)當(dāng)m=0時(shí),C2的圖象與x軸相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)).與y軸相交于點(diǎn)D.把線(xiàn)段AD原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到它的對(duì)應(yīng)線(xiàn)段A′D′,若線(xiàn)A′D′與C2的圖象有公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,內(nèi)接于,AD是直徑,的平分線(xiàn)交BD于H,交于點(diǎn)C,連接DC并延長(zhǎng),交AB的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:;
(2)若,求的值
(3)如圖2,連接CB并延長(zhǎng),交DA的延長(zhǎng)線(xiàn)于點(diǎn)F,若,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓,半圓恰好經(jīng)過(guò)三角形的直角頂點(diǎn)C,以點(diǎn)D為頂點(diǎn),作90°的∠EDF,與半圓交于點(diǎn)E,F(xiàn),則圖中陰影部分的面積是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某養(yǎng)殖場(chǎng)計(jì)劃用96米的竹籬笆圍成如圖所示的①、②、③三個(gè)養(yǎng)殖區(qū)域,其中區(qū)域①是正方形,區(qū)域②和③是矩形,且AG∶BG=3∶2.設(shè)BG的長(zhǎng)為2x米.
(1)用含x的代數(shù)式表示DF= ;
(2)x為何值時(shí),區(qū)域③的面積為180平方米;
(3)x為何值時(shí),區(qū)域③的面積最大?最大面積是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com