【題目】如圖,在四邊形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,則四邊形ABCD的面積為__.
【答案】16
【解析】
延長AB至點E,使BE=DA,連接CE,作CF⊥AB于F,證明△CDA≌△CBE,根據(jù)全等三角形的性質(zhì)得到CA=CE,∠BCE=∠DCA,得到△CAE為等邊三角形,根據(jù)等邊三角形的性質(zhì)計算,得到答案.
延長AB至點E,使BE=DA,連接CE,作CF⊥AB于F,
∵∠DAB+∠DCB=120°+60°=180°,
∴∠CDA+∠CBA=180°,又∠CBE+∠CBA=180°,
∴∠CDA=∠CBE,
在△CDA和△CBE中,
,
∴△CDA≌△CBE(SAS)
∴CA=CE,∠BCE=∠DCA,
∵∠DCB=60°,
∴∠ACE=60°,
∴△CAE為等邊三角形,
∴AE=AC=8,CF=AC=4,
則四邊形ABCD的面積=△CAB的面積=×8×4=16,
故答案為:16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標有數(shù)字為-3、-1、2、4的小球,它們的材質(zhì)、形狀、大小完全相同,小明從布袋里隨機取出一個小球,記下數(shù)字為x,小紅從剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點P的坐標(x,y).
(1)請你運用畫樹狀圖或列表的方法,寫出點P所有可能的坐標;
(2)求出點P(x,y)滿足x+y>1的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是上一點,.
(Ⅰ)如圖①,過點作的切線,與的延長線交于點,求的大小及的長;
(Ⅱ)如圖②,為上一點,延長線與交于點,若,求的大小及的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC與等腰三角形△EDC有公共頂點C,其中∠EDC=120°,AB=CE=2,連接BE,P為BE的中點,連接PD、AD
(1)為了研究線段AD與PD的數(shù)量關(guān)系,將圖1中的△EDC繞點C旋轉(zhuǎn)一個適當(dāng)?shù)慕嵌,?/span>CE與CA重合,如圖2,請直接寫出AD與PD的數(shù)量關(guān)系;
(2)如圖1,(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)如圖3,若∠ACD=45°,求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD交CD的延長線于點E,DA平分∠BDE.
⑴求證:AE是⊙O的切線;
⑵若AE=4cm,CD=6cm,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,一次函數(shù)y=x﹣1的圖象與x軸,y軸分別交于點A,B,與反比例函數(shù)y=的圖象交于點C,D,CE⊥x軸于點E,.
(1)求反比例函數(shù)的表達式與點D的坐標;
(2)以CE為邊作ECMN,點M在一次函數(shù)y=x﹣1的圖象上,設(shè)點M的橫坐標為a,當(dāng)邊MN與反比例函數(shù)y=的圖象有公共點時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)“圓的對稱性”時知道結(jié)論:垂直于弦的直徑一定平分這條弦,請嘗試解決問題:如圖,在Rt△ACB中,∠ACB=90°,圓O是△ACB的外接圓.點D是圓O上一點,過點D作DE⊥BC,垂足為E,且BD平分∠ABE,
(1)判斷直線ED與圓O的位置關(guān)系,并說明理由.
(2)若AC=12,BC=5,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,E是BC邊的中點,點P在射線AD上,過P作PF⊥AE于F.
(1)求證:;
(2)當(dāng)點P在射線AD上運動時,設(shè)PA=X,是否存在實數(shù)x,使以P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個正整數(shù),它的各位數(shù)字是左右對稱的,則稱這個數(shù)是對稱數(shù).如,,都是對稱數(shù),最小的對稱數(shù)是,但沒有最大的對稱數(shù),因為數(shù)位是無窮的.
若將任意一個四位對稱數(shù)分解為前兩位數(shù)表示的數(shù)和后兩位數(shù)表示的數(shù),請你證明:這兩個數(shù)的差一定能被整除;
設(shè)一個三位對稱數(shù)為(),該對稱數(shù)與相乘后得到一個四位數(shù),該四位數(shù)前兩位所表示的數(shù)和后兩位所表示的數(shù)相等,且該四位數(shù)各位數(shù)字之和為8,求這個三位對稱數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com