【題目】如圖,在四邊形 ABCD 中,對角線 AC 平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,求∠BDC 的度數(shù)?
【答案】
【解析】
過C作CE⊥AB于E,CF⊥BD于F,CG⊥AD于G,依據(jù)BC平分∠DBE,AC平分∠BAD,即可得到CD平分∠BDG,再根據(jù)三角形外角性質(zhì),即可得出∠BDC的度數(shù).
解:如圖,過C作CE⊥AB于E,CF⊥BD于F,CG⊥AD于G,
∵∠ABD=52°,∠ABC=116°,
∴∠DBC=∠CBE=64°,
∴BC平分∠DBE,
∴CE=CF,
又∵AC平分∠BAD,
∴CE=CG,
∴CF=CG,
又∵CG⊥AD,CF⊥DB,
∴CD平分∠BDG,
∵∠CBE是△ABC的外角,∠DBE是△ABD的外角,
∴∠ADB=2∠ACB=2α°,
∴∠BDG=180°-2α°,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(,、、為常數(shù))的圖象如圖所示,下列個結(jié)論:①;②;③;④;⑤為常數(shù),且.其中正確的結(jié)論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市委市政府提出的建設(shè)“綠色襄陽”的號召,我市某單位準(zhǔn)備將院內(nèi)一塊長30m,寬20m的長方形空地,建成一個矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進(jìn)出口的寬度應(yīng)為多少米?(注:所有小道進(jìn)出口的寬度相等,且每段小道均為平行四邊形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AB=5cm,BC=3cm,,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)問t為何值時,△BCP為等腰三角形?
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當(dāng)P、Q中有一點到達(dá)終點時,另一點也停止運動.當(dāng)t為何值時,直線PQ把△ABC的周長分成相等的兩部分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB<BC,E為CD邊的中點,將△ADE繞點E順時針旋轉(zhuǎn)180°,點D的對應(yīng)點為C,點A的對應(yīng)點為F,過點E作ME⊥AF交BC于點M,連接AM、BD交于點N,現(xiàn)有下列結(jié)論:
①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段,,.點,為線段上兩點.從下面4個條件中:①;②;③;④.選擇一個條件,使得一定和全等 .則所有滿足條件的序號是( )
A.①④B.②③C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個紙盒內(nèi)有張完全相同的卡片,分別標(biāo)號為,,,.隨機抽取一張卡片后不放回,再隨機抽取另一張卡片.
(1)用列舉法求“兩次抽出卡片的標(biāo)號等于”的概率;
(2)小明同學(xué)連續(xù)做了次試驗,這次試驗沒有一次出現(xiàn)“兩次抽出卡片的標(biāo)號和等于”.他說,“第次試驗我一定能夠‘兩次抽出卡片的標(biāo)號和等于’”.你認(rèn)為他說得對嗎,為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com