【題目】為響應(yīng)市委市政府提出的建設(shè)“綠色襄陽”的號(hào)召,我市某單位準(zhǔn)備將院內(nèi)一塊長(zhǎng)30m,寬20m的長(zhǎng)方形空地,建成一個(gè)矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進(jìn)出口的寬度應(yīng)為多少米?(注:所有小道進(jìn)出口的寬度相等,且每段小道均為平行四邊形)

【答案】1

【解析】解:設(shè)小道進(jìn)出口的寬度為x米,依題意得(30﹣2x)(20﹣x=532

整理,得x2﹣35x+34=0,解得,x1=1x2=34。

∵3430(不合題意,舍去),∴x=1。

答:小道進(jìn)出口的寬度應(yīng)為1米。

設(shè)小道進(jìn)出口的寬度為x米,然后利用其種植花草的面積為532平方米列出方程求解即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,4),頂點(diǎn)Cx軸的正半軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過頂點(diǎn)B,則反比例函數(shù)的表達(dá)式為( 。

A. y= B. y= C. y= D. y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖a,P、Q是△ABC的邊BC上的兩點(diǎn),且△APQ為等邊三角形,AB=AC,

1)求證:BP=CQ.

2)如圖a,若∠BAC=120AP=3,求BC的長(zhǎng).

3)若∠BAC=120,沿直線BC向右平行移動(dòng)△APQ得到△A′P′Q′(如圖b),A′Q′AC交于點(diǎn)M.當(dāng)點(diǎn)P移動(dòng)到何處時(shí),△AA′M≌△CQ′M?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店計(jì)劃購進(jìn)AB兩種型號(hào)的電動(dòng)自行車共30輛,其中A型電動(dòng)自行車不少于20輛,A、B兩種型號(hào)電動(dòng)自行車的進(jìn)貨單價(jià)分別為2500元、3000元,售價(jià)分別為2800元、3500元,設(shè)該商店計(jì)劃購進(jìn)A型電動(dòng)自行車m輛,兩種型號(hào)的電動(dòng)自行車全部銷售后可獲利潤(rùn)y元.

1)求出ym之間的函數(shù)關(guān)系式;

2)該商店如何進(jìn)貨才能獲得最大利潤(rùn)?此時(shí)最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD,AF分別為ABC的中線和高,BEABD的角平分線.

1)若∠BED=40°,∠BAD=25°,求∠BAF的大小;

2)若ABC的面積為40,BD=5,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+b的圖象與反比例函數(shù)y=的圖象交于A(3,1),B(﹣,n)兩點(diǎn).

(1)求該反比例函數(shù)的解析式;

(2)求n的值及該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)設(shè)定了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(轉(zhuǎn)盤被等分成16個(gè)扇形),并規(guī)定:顧客在商場(chǎng)消費(fèi)每滿200元,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)紅、黃和藍(lán)色區(qū)域,顧客就可以分別獲得50元、30元和10元的購物券.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,則可以直接獲得購物券15元.

(1)轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤,獲得50元、30元、10元購物券的概率分別是多少?

(2)如果有一名顧客在商場(chǎng)消費(fèi)了200元,通過計(jì)算說明轉(zhuǎn)轉(zhuǎn)盤和直接獲得購物券,哪種方式對(duì)這位顧客更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形 ABCD 中,對(duì)角線 AC 平分∠DAB,∠ABD52°,∠ABC116°,∠ACBα°,求∠BDC 的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,ADC=90°EAB的中點(diǎn).

1)求證:ADC∽△ACB

2CEAD有怎樣的位置關(guān)系?試說明理由;

3)若AD=4AB=6,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案