【題目】在平面直角坐標(biāo)系中,二次函數(shù) y=ax2+bx+2 的圖象與 x 軸交于 A(﹣3,0),B(1,0)兩點(diǎn),與 y 軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的關(guān)系解析式 ,x 滿(mǎn)足什么值時(shí) y﹤0 ?
(2)點(diǎn) p 是直線 AC 上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn) P,使△ACP 面積最大?若存在,求出點(diǎn) P的坐標(biāo);若不存在,說(shuō)明理由
(3)點(diǎn) M 為拋物線上一動(dòng)點(diǎn),在 x 軸上是否存在點(diǎn) Q,使以 A、C、M、Q 為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出點(diǎn) Q 的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1), 或;(2)P;(3)
【解析】
(1)將點(diǎn)A(﹣3,0),B(1,0)帶入y=ax2+bx+2得到二元一次方程組,解得即可得出函數(shù)解析式;又從圖像可以看出x 滿(mǎn)足什么值時(shí) y﹤0;
(2)設(shè)出P點(diǎn)坐標(biāo),利用割補(bǔ)法將△ACP 面積轉(zhuǎn)化為,帶入各個(gè)三角形面積算法可得出與m之間的函數(shù)關(guān)系,分析即可得出面積的最大值;
(3)分兩種情況討論,一種是CM平行于x軸,另一種是CM不平行于x軸,畫(huà)出點(diǎn)Q大概位置,利用平行四邊形性質(zhì)即可得出關(guān)于點(diǎn)Q坐標(biāo)的方程,解出即可得到Q點(diǎn)坐標(biāo).
解:(1)將A(﹣3,0),B(1,0)兩點(diǎn)帶入y=ax2+bx+2可得:
解得:
∴二次函數(shù)解析式為.
由圖像可知,當(dāng)或時(shí)y﹤0;
綜上:二次函數(shù)解析式為,當(dāng)或時(shí)y﹤0;
(2)設(shè)點(diǎn)P坐標(biāo)為,如圖連接PO,作PM⊥x軸于M,PN⊥y軸于N.
PM=,PN=,AO=3.
當(dāng)時(shí),,所以OC=2
,
∵
∴函數(shù)有最大值,
當(dāng)時(shí),有最大值,
此時(shí);
所以存在點(diǎn),使△ACP 面積最大.
(3)存在,
假設(shè)存在點(diǎn)Q使以 A、C、M、Q 為頂點(diǎn)的四邊形是平行四邊形
①若CM平行于x軸,如下圖,有符合要求的兩個(gè)點(diǎn)此時(shí)=
∵CM∥x軸,
∴點(diǎn)M、點(diǎn)C(0,2)關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),
∴M(﹣2,2),
∴CM=2.
由=;
②若CM不平行于x軸,如下圖,過(guò)點(diǎn)M作MG⊥x軸于點(diǎn)G,
易證△MGQ≌△COA,得QG=OA=3,MG=OC=2,即.
設(shè)M(x,﹣2),則有,解得:.
又QG=3,∴,
∴
綜上所述,存在點(diǎn)P使以 A、C、M、Q 為頂點(diǎn)的四邊形是平行四邊形,
Q點(diǎn)坐標(biāo)為:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AD方向以每秒1個(gè)單位的速度運(yùn)動(dòng),連接BP,作點(diǎn)A關(guān)于直線BP的對(duì)稱(chēng)點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).在動(dòng)點(diǎn)P在射線AD上運(yùn)動(dòng)的過(guò)程中,則使點(diǎn)E到直線BC的距離等于3時(shí)對(duì)應(yīng)的t的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)D是半圓O上一點(diǎn),點(diǎn)C是 的中點(diǎn),CE⊥AB于點(diǎn)E,過(guò)點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE、CB于點(diǎn)P、Q,連接AC.
(1)求證:GP=GD;
(2)求證:P是線段AQ的中點(diǎn);
(3)連接CD,若CD=2,BC=4,求⊙O的半徑和CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A沿邊AB向點(diǎn)B以1cm/s的速度移動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B沿邊BC向點(diǎn)C以2cm/s的速度移動(dòng).問(wèn):
(1)幾秒時(shí)△PBQ的面積等于8cm2;
(2)幾秒時(shí)△PDQ的面積等于28cm2;
(3)幾秒時(shí)PQ⊥DQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù) y ax2 bx c(a 0) 的圖象如圖所示,并且關(guān)于 x 的一元二次方程 ax2 bx c m 0 有兩個(gè)不相等的實(shí) 數(shù)根,下列結(jié)論:① b2 4ac 0 ;② abc 0 ;③ a b c 0 ;④ m 2,其中,正確的個(gè)數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,BC=20 cm,P,Q,M,N分別從A,B,C,D出發(fā),沿AD,BC,CB,DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí),運(yùn)動(dòng)即停止.已知在相同時(shí)間內(nèi),若BQ=x cm(x≠0),則AP=2x cm,CM=3x cm,DN=x2 cm,
(1)當(dāng)x為何值時(shí),點(diǎn)P,N重合;
(2)當(dāng)x為何值是,以P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(1,0),B點(diǎn)坐標(biāo)為(5,0)點(diǎn)C(0,5),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求△MCB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A.B兩點(diǎn),且A點(diǎn)坐標(biāo)為(3,0),經(jīng)過(guò)B點(diǎn)的直線y=x-1交拋物線于點(diǎn)D.
(1)求B點(diǎn)坐標(biāo)和拋物線的解析式
(2)點(diǎn)D的坐標(biāo)
(3)過(guò)x軸上點(diǎn)E(a,0)(E點(diǎn)在B點(diǎn)的右側(cè))作直線EF∥BD,交拋物線于點(diǎn)F,是否存在實(shí)數(shù)a使四邊形BDFE是平行四邊形?如果存在,求出滿(mǎn)足條件的a;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x1、x2是一元二次方程2x2-2x+m+1=0的兩個(gè)實(shí)根.
(1)求實(shí)數(shù)m的取值范圍;
(2)如果m滿(mǎn)足不等式7+4x1x2>x12+x22,且m為整數(shù).求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com