【題目】在△ABC中,已知D為直線BC上一點(diǎn),若∠ABC=x°,∠BAD=y°.
(1)若CD=CA=AB,請(qǐng)求出y與x的等量關(guān)系式;
(2)當(dāng)D為邊BC上一點(diǎn),并且CD=CA,x=40,y=30時(shí),則AB AC(填“=”或“≠”);
(3)如果把(2)中的條件“CD=CA”變?yōu)?/span>“CD=AB”,且x,y的取值不變,那么(1)中的結(jié)論是否仍成立?若成立請(qǐng)寫出證明過程,若不成立請(qǐng)說明理由.
【答案】(1)3x+2y=180;(2)=;(3)成立.理由見解析
【解析】
試題分析:(1)由CD=CA,可表示出∠ADC的度數(shù),又由三角形外角的性質(zhì),可得∠ADC=∠B+∠BAD,則可得方程:90﹣x=x+y,繼而求得答案;
(2)由CD=CA,x=40,y=30,首先可求得∠ADC的度數(shù),繼而證得CD=CA,則可求得∠C=∠B=40°,證得AB=AC;
(3)首先在BC上取點(diǎn)E,使BE=CD=AB,連接AE,易證得AD=AE,繼而可得△ADB≌△AEC(SAS),則可證得結(jié)論.
解:(1)∵∠ABC=x°,CA=AB,
∴∠C=∠ABC=x°,
∵CD=CA,
∴∠ADC=∠CAD==90°﹣x°,
∵∠ADC=∠B+∠BAD,
∴90﹣x=x+y,
即:3x+2y=180;
(2)∵CD=CA,∠ABC=x°=40°,∠BAD=y°=30°,
∴∠ADC=∠ABC+∠BAD=70°,
∵CD=CA,
∴∠CAD=∠CDA=70°,
∴∠C=40°,
∴∠C=∠ABC,
∴AB=AC;
故答案為:=;
(3)成立.
理由:在BC上取點(diǎn)E,使BE=CD=AB,連接AE,
則∠AEB=∠EAB=(180°﹣40°)=70°,
∴∠AEB=∠ADE=70°,
∴AD=AE,
∴∠ADB=∠AEC=180°﹣70°=110°,
∵BD=BE﹣DE,CE=CD﹣DE,
∴BD=EC,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴AB=AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)零件的形狀如圖所示,按規(guī)定∠A=90,∠C=25,∠B=25,檢驗(yàn)員已量得∠BDC=150,請(qǐng)問:這個(gè)零件合格嗎?說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】地球上陸地的面積約為149 000 000平方千米,把數(shù)據(jù)149 000 000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分別找一點(diǎn)M、N,當(dāng)△AMN周長(zhǎng)最小時(shí),∠MAN的度數(shù)為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)認(rèn)真觀察圖形,解答下列問題:
(1)根據(jù)圖中條件,用兩種方法表示兩個(gè)陰影圖形的面積的和(只需表示,不必化簡(jiǎn));
(2)由(1),你能得到怎樣的等量關(guān)系?請(qǐng)用等式表示;
(3)如果圖中的a,b(a>b)滿足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某計(jì)算裝置有一數(shù)據(jù)的入口A和一運(yùn)算結(jié)果的出口B.
下表是小剛輸入一些數(shù)后所得的結(jié)果:
(1)若輸出的數(shù)是5,則小剛輸入的數(shù)是多少?
(2)若小剛輸入的數(shù)是225,則輸出的結(jié)果是多少?
(3)若小剛輸入的數(shù)是n(n≥10),你能用含n的式子表示輸出的結(jié)果嗎?試一試.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿線段AB向點(diǎn)B運(yùn)動(dòng).在運(yùn)動(dòng)過程中,當(dāng)△APC為等腰三角形時(shí),點(diǎn)P出發(fā)的時(shí)刻t可能的值為( )
A.5 B.5或8 C. D.4或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積為1.第一次操作:分別延長(zhǎng)AB,BC,CA至點(diǎn)A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長(zhǎng)A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,…按此規(guī)律,要使得到的三角形的面積超過2010,最少經(jīng)過幾次操作 ( 。
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對(duì)角線OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點(diǎn)E的反比例函數(shù)解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com