【題目】如圖,矩形ABCD中,AB=m,AD=n.
(1)若m=4,矩形ABCD的邊CD上是否存在點(diǎn)P,使得∠APB=90°?寫出點(diǎn)P存在或不存在的可能情況和此時(shí)n滿足的條件.
(2)矩形ABCD的邊上是否存在點(diǎn)P,使得∠APB=60°?寫出點(diǎn)P存在或不存在的可能情況和此時(shí)m、n滿足的條件.
【答案】(1)①當(dāng)0<n<2時(shí),CD上存在2個(gè)點(diǎn)P,使得∠APB=90°;②當(dāng)n=2時(shí),CD上存在1個(gè)點(diǎn)P,使得∠APB=90°;③當(dāng)n>2時(shí),CD上不存在滿足條件的點(diǎn)P;(2)詳見解析.
【解析】
(1)根據(jù)直角的定義與矩形的關(guān)系作圖即可分析;
(2)根據(jù)含30°的直角三角形的性質(zhì)結(jié)合圖形即可求解.
(1)①如圖,當(dāng)0<n<2時(shí),CD上存在2個(gè)點(diǎn)P,使得∠APB=90°;
②如圖當(dāng)n=2時(shí),CD上存在1個(gè)點(diǎn)P,使得∠APB=90°;
③如圖當(dāng)n>2時(shí),CD上不存在滿足條件的點(diǎn)P.
(2)①如圖,當(dāng)=tan60°=時(shí),n=m時(shí),矩形ABCD的邊上存在2個(gè)點(diǎn)P,使得∠APB=60°;
②故當(dāng)n<m時(shí),矩形ABCD的邊上不存在點(diǎn)P,使得∠APB=60°;
③如圖,當(dāng)△ABP為等邊三角形時(shí),當(dāng) =tan60°=,即n=m時(shí),矩形ABCD的邊上存在3個(gè)點(diǎn)P,使得∠APB=60°;
④如圖,故當(dāng)m<n<m時(shí),矩形ABCD的邊上存在4個(gè)點(diǎn)P,使得∠APB=60°;
⑤如圖,當(dāng)n>m時(shí),矩形ABCD的邊上存在2個(gè)點(diǎn)P,使得∠APB=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1),△ABC和△AOD都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上,請(qǐng)直接寫出線段BE與線段CD的數(shù)量關(guān)系與位置關(guān)系;
(2)如圖(2),將圖(1)中的△ABC繞點(diǎn)A順時(shí)針施轉(zhuǎn)α(0°<α<360°),那么(1)中線段BE與線段CD的關(guān)系是否還成立?如果成立,請(qǐng)你結(jié)合圖(2)給出的情形進(jìn)行證明;如果不成立,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,直徑垂直弦于點(diǎn),且.點(diǎn)為上一點(diǎn)(點(diǎn)不與點(diǎn),重合),連結(jié),,,,.過(guò)點(diǎn)作于點(diǎn).給出下列結(jié)論:①是等邊三角形;②在點(diǎn)從的運(yùn)動(dòng)過(guò)程中,的值始終等于.則下列說(shuō)法正確的是( )
A.①,②都對(duì)B.①對(duì),②錯(cuò)C.①錯(cuò),②對(duì)D.①,②都錯(cuò)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只不透明的袋子中,裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同.
(1)小明認(rèn)為,攪勻后從中任意摸出一個(gè)球,不是白球就是紅球是等可能的,你同意他的說(shuō)法嗎?為什么?
(2)攪勻后從中一把摸出兩個(gè)球,請(qǐng)通過(guò)列表和樹狀圖求出兩個(gè)球都是白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某排球隊(duì)6名場(chǎng)上隊(duì)員的身高(單位:cm)是:180,182,184,186,190,194.現(xiàn)用一名身高為188cm的隊(duì)員換下場(chǎng)上身高為182cm的隊(duì)員,與換人前相比,場(chǎng)上隊(duì)員的身高
A.平均數(shù)變小,方差變小B.平均數(shù)變小,方差變大
C.平均數(shù)變大,方差變小D.平均數(shù)變大,方差變大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙O于E,交AB于點(diǎn)D,連接AE,∠E=30°,AC=5.
(1)求CE的長(zhǎng);
(2)求S△ADC:S△ACE的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC為50米,在乙樓頂部A點(diǎn)測(cè)得甲樓頂部D點(diǎn)的仰角為37°,在乙樓底部B點(diǎn)測(cè)得甲樓頂部D點(diǎn)的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,我們規(guī)定:一個(gè)銳角的對(duì)邊與斜邊的比值稱為這個(gè)銳角的正弦值.
例如:Rt△ABC中,∠C=90°,∠A的對(duì)邊BC與斜邊AB的比值,即就是∠A的正弦值.利用量角器可以制作“銳角正弦值速查卡”.制作方法如下:
如圖,設(shè)OA=1,以O為圓心,分別以0.05,0.1,0.15,0.2,…,0.9,0.95長(zhǎng)為半徑作半圓,再以OA為直徑作⊙M.利用“銳角正弦值速查卡”可以讀出相應(yīng)銳角正弦的近似值.例如:60°的正弦值約在0.85~0.88之間取值,45°的正弦值約在0.70~0.72之間取值.下列角度中正弦值最接近0.94的是( 。
A.30°B.50°C.40°D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com