【題目】已知:在△ABC年,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合).以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當(dāng)點D在線段BC上時,求證:①BD⊥CF. ②.
(2)如圖2,當(dāng)點D在線段BC的延長線上時,其它條件不變,請直接寫出CF、BC、CD三條線段之間的關(guān)系;
(3)如圖3,當(dāng)點D在線段BC的反向延長線上時,且點A、F分別在直線BC的兩側(cè),其它條件不變:
①請直接寫出CF、BC、CD三條線段之間的關(guān)系,
②若連接正方形對角線AE,DF,交點為0,連接OC,探究△AOC的形狀,并說明理由.
【答案】(1)①見解析;②見解析;(2)見解析(3)①見解析;②見解析.
【解析】
(1)①根據(jù)等腰直角三角形的性質(zhì)可得∠ABC=∠ACB=45°,再根據(jù)正方形的性質(zhì)可得AD=AF,∠DAF=90°,然后利用同角的余角相等求出∠BAD=∠CAF,然后利用“邊角邊”證明△BAD和△CAF全等,根據(jù)全等三角形對應(yīng)角相等可得∠ACF=∠ABD,再求出∠ACF+∠ACB=90°,從而得證;②根據(jù)全等三角形對應(yīng)邊相等可得BD=CF,從而求出CF=BC-CD;
(2)與(1)同理可得BD=CF,然后結(jié)合圖形可得CF=BC+CD;
(3)①與(1)同理可得BD=CF,然后結(jié)合圖形可得CF=CD-BC;②根據(jù)等腰直角三角形的性質(zhì)求出∠ABC=∠ACB=45°,再根據(jù)鄰補角的定義求出∠ABD=135°,再根據(jù)同角的余角相等求出∠BAD=∠CAF,然后利用“邊角邊”證明△BAD和△CAF全等,根據(jù)全等三角形對應(yīng)角相等可得∠ACF=∠ABD,再求出∠FCD=90°,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出OC=DF,再根據(jù)正方形的對角線相等求出OC=OA,從而得到△AOC是等腰三角形.
(1)證明:①∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=∠BAD+∠DAC=90°,
∠DAF=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
∴△BAD≌△CAF(SAS),
∴∠ACF=∠ABD=45°,
∴∠ACF+∠ACB=90°,
∴BD⊥CF;
②由①△BAD≌△CAF可得BD=CF,
∵BD=BC-CD,
∴CF=BC-CD;
(2)與(1)同理可得BD=CF,
所以,CF=BC+CD;
(3)①與(1)同理可得,BD=CF,
所以,CF=CD-BC;
②∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
則∠ABD=180°-45°=135°,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=∠BAF+∠CAF=90°,
∠DAF=∠BAD+∠BAF=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
∴△BAD≌△CAF(SAS),
∴∠ACF=∠ABD=180°-45°=135°,
∴∠FCD=∠ACF-∠ACB=90°,
則△FCD為直角三角形,
∵正方形ADEF中,O為DF中點,
∴OC=DF,
∵在正方形ADEF中,OA=AE,AE=DF,
∴OC=OA,
∴△AOC是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當(dāng)AB=6,AC=8時,求線段PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次演講比賽中,評委將從演講內(nèi)容、演講能力、演講效果三方面為選手打分,各項成績均按百分制,進(jìn)入決賽的兩名選手的單項成績?nèi)缦卤硭荆?/span>
選手 | 演講內(nèi)容 | 演講能力 | 演講效果 |
甲 | 85 | 95 | 95 |
乙 | 95 | 85 | 95 |
(1)如果認(rèn)為這三方面的成績同等重要,從他們的成績看,誰能勝出?
(2)如果按演講內(nèi)容占50%,演講能力占40%,演講效果占10%的比例計算甲、乙的平均成績,那么誰將勝出?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是∠BAC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)∠BAC= 時,矩形AEBD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板的直角頂點O重疊在一起.
(1)問題發(fā)現(xiàn):如圖①,當(dāng)OB平分∠COD時,∠AOD+∠BOC的度數(shù)是 ;
(2)拓展探究:如圖②,當(dāng)OB不平分∠COD時,∠AOD+∠BOC的度數(shù)是多少?
(3)問題解決:當(dāng)∠BOC的余角的4倍等于∠AOD時,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是小華同學(xué)一個學(xué)期數(shù)學(xué)成績的記錄.根據(jù)表格提供的信息,回答下列的問題:
考試類別 | 平時考試 | 期中考試 | 期末考試 | |||
第一單元 | 第二單元 | 第三單元 | 第四單元 | |||
成績(分) | 85 | 78 | 90 | 91 | 90 | 94 |
(1)小明6次成績的眾數(shù)是 ,中位數(shù)是 ;
(2)求該同學(xué)這個同學(xué)這一學(xué)期平時成績的平均數(shù);
(3)總評成績權(quán)重規(guī)定如下:平時成績占20%,期中成績占30%,期末成績占50%,請計算出小華同學(xué)這一個學(xué)期的總評成績是多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖A、B分別為數(shù)軸上的兩點,點A對應(yīng)的數(shù)為-20,點B對應(yīng)的數(shù)為120.
(1)請寫出線段AB的中點C對應(yīng)的數(shù).
(2)點P從點B出發(fā),以3個單位/秒的速度向左運動,同時點Q從點A出發(fā),以2個單位/秒的速度向右運動,當(dāng)點P、Q重合時對應(yīng)的數(shù)是多少?
(3)在(2)的條件下,P、Q兩點運動多長時間相距50個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,動點P每次沿著與x軸成45°的方向運動,第一次從原點O向右上方運動1個單位長度到P1(,),第二次從點P1向右下方運動1個單位長度到P2(,0),第三次從點p2向右下方運動2個單位長度到P3(2,-),第四次從點P3向右上方動2個單位長度到P4(3,0),第五次從點P4向右上方運動3個單位長度到P5(,),第六次從點P5向右下方運動3個單位長度到P6(6,0)……依此規(guī)律下去,則P43的坐標(biāo)為( 。
A. (242,-11)B. (242,11)
C. ()D. ()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知RtΔABC,∠C=90°,D為BC的中點.以AC為直徑的圓O交AB于點E.
(1)求證:DE是圓O的切線.
(2)若AE:EB=1:2,BC=6,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com