【題目】知識(shí)改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車到黑龍灘(用C表示)開展社會(huì)實(shí)踐活動(dòng),車到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A13千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)

【答案】(20-5)千米.

【解析】BDAC,設(shè)AD=x,在RtABD中求得BD=x,在RtBCD中求得CD=x,由AC=AD+CD建立關(guān)于x的方程,解之求得x的值,最后由BC=可得答案.

過點(diǎn)BBD AC,

依題可得:∠BAD=60°,CBE=37°,AC=13(千米),

BDAC,

∴∠ABD=30°,CBD=53°,

RtABD中,設(shè)AD=x,

tanABD=

tan30°=,

BD=x,

RtDCB中,

tanCBD=

tan53°=,

CD=

CD+AD=AC,

x+=13,解得,x=

BD=12-,

RtBDC中,

cosCBD=tan60°=,

即:BC=(千米),

B、C兩地的距離為(20-5千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并完成任務(wù):

點(diǎn)在數(shù)軸上分別表示有理數(shù);兩點(diǎn)之間的距離表示為

當(dāng)兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)在原點(diǎn),如圖1所示, ;

當(dāng)兩點(diǎn)都不在原點(diǎn)時(shí),分三種情況,

情況一:如圖2所示,點(diǎn)都在原點(diǎn)的右側(cè),

情況二:如圖3所示,點(diǎn)都在原點(diǎn)左側(cè),;

情況三:如圖4所示,點(diǎn)在原點(diǎn)的兩邊,;

綜上所述,若點(diǎn)在數(shù)軸上分別表示有理數(shù),則數(shù)軸上兩點(diǎn)之間的距離為

任務(wù)一:數(shù)軸上表示25的兩點(diǎn)之間的距離是________,數(shù)軸上表示-2-5的兩點(diǎn)之間的距離是________,數(shù)軸上表示3-1的兩點(diǎn)之間的距離是________

任務(wù)二:點(diǎn)在數(shù)軸上分別表示有理數(shù),那么的距離與的距離之和可表示為_________(用含絕對(duì)值的式子表示).如果,那么________

任務(wù)三:當(dāng)取最小值時(shí), =________, =________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1,∠2互為補(bǔ)角,且∠3=B,

(1)求證:∠AFE=ACB

(2)CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB垂直平分線段CDABCD),點(diǎn)E是線段CD延長(zhǎng)線上的一點(diǎn),且BEAB,連接AC,過點(diǎn)DDGAC于點(diǎn)G,交AE的延長(zhǎng)線與點(diǎn)F

1)若∠CABα,則∠AFG   (用α的代數(shù)式表示);

2)線段AC與線段DF相等嗎?為什么?

3)若CD6,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:,

1)請(qǐng)找出圖中一對(duì)全等的三角形,并說明理由;

2)若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是我縣新區(qū)部分小區(qū)位置簡(jiǎn)圖.設(shè)港澳城為點(diǎn)A,水榭花都為點(diǎn)B,朝陽家園為點(diǎn)C,濱海華庭為點(diǎn)D,陽光家園為點(diǎn)E,盛世嘉苑為點(diǎn)F,設(shè)每個(gè)小格的單位為1

1)請(qǐng)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并寫出六個(gè)小區(qū)的坐標(biāo);

2)依次連接點(diǎn)A、C、E、B,請(qǐng)求出四邊形ACEB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題與它的逆命題都為真命題的是(

A. 已知非零實(shí)數(shù)x,如果為分式,那么它的倒數(shù)也是分式。

B. 如果x的相反數(shù)為7,那么x-7。

C. 如果一個(gè)數(shù)能被8整除,那么這個(gè)數(shù)也能被4整除。

D. 如果兩個(gè)數(shù)的和是偶數(shù),那么它們都是偶數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建設(shè)中的大外環(huán)路是我市的一項(xiàng)重點(diǎn)民生工程.某工程公司承建的一段路基工程的施工土方量為120萬立方,原計(jì)劃由公司的甲、乙兩個(gè)工程隊(duì)從公路的兩端同時(shí)相向施工150天完成.由于特殊情況需要,公司抽調(diào)甲隊(duì)外援施工,由乙隊(duì)先單獨(dú)施工40天后甲隊(duì)返回,兩隊(duì)又共同施工了110天,這時(shí)甲乙兩隊(duì)共完成土方量103.2萬立方.

(1)問甲、乙兩隊(duì)原計(jì)劃平均每天的施工土方量分別為多少萬立方?

(2)在抽調(diào)甲隊(duì)外援施工的情況下,為了保證150天完成任務(wù),公司為乙隊(duì)新購進(jìn)了一批機(jī)械來提高效率,那么乙隊(duì)平均每天的施工土方量至少要比原來提高多少萬立方才能保證按時(shí)完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在正方形ABCD中,點(diǎn)PAC上,PEABE,PFBCF.

1)試判斷線段EFPD的長(zhǎng)是否相等,并說明理由.

2)若點(diǎn)OAC的中點(diǎn),判斷OFOE之間有怎樣的位置和數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案