【題目】如圖,AB垂直平分線段CDABCD),點(diǎn)E是線段CD延長線上的一點(diǎn),且BEAB,連接AC,過點(diǎn)DDGAC于點(diǎn)G,交AE的延長線與點(diǎn)F

1)若∠CABα,則∠AFG   (用α的代數(shù)式表示);

2)線段AC與線段DF相等嗎?為什么?

3)若CD6,求EF的長.

【答案】(1)45°﹣α;(2)相等,理由見解析;(3)EF=3

【解析】

1)根據(jù)等腰三角形的性質(zhì)得到∠BAE=∠AEB45°,根據(jù)三角形的內(nèi)角和即可得到結(jié)論;

2)連接AD,根據(jù)線段垂直平分線的性質(zhì)得到ACAD,求得∠ADC=∠ACB=α,于是得到ACDF

3)根據(jù)已知條件得到BDCB3,過FFHCECE的延長線于H,得到△EHF是等腰直角三角形,求得FHHE,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.

解:(1∵AB⊥CD,

∴∠ABE90°

∵ABBE,

∴∠BAE∠AEB45°

∵∠CABα,∠CDG90°﹣(90°α)=α∠EDF

∴∠AFG∠AED∠EDF45°α;

故答案為:45°α;

2)相等,

證明:連接AD,

∵AB垂直平分線段CD,

∴ACAD

∴∠ADC∠ACB90°α,

∴∠DAE∠ADC45°45°α,

∴∠DAE∠AFD,

∴ADDF,

∴ACDF;

3∵CD6,

∴BDCB3,

FFH⊥CECE的延長線于H

△EHF是等腰直角三角形,

∴FHHE,

∵∠H∠ABC90°,∠CAB∠CDG∠FDH,ACADDF

∴△ACB≌△DFHAAS),

∴FHCB3

∴EFFH3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地電話撥號入網(wǎng)有兩種收費(fèi)方式,用戶可以任選其一.

計(jì)時(shí)制:0.05/;

包月制:50/(限一部個(gè)人住宅電話上網(wǎng)).

此外,每一種上網(wǎng)方式都得加收通信費(fèi)0.02/.

(1)某用戶某月上網(wǎng)的時(shí)間為x小時(shí),請你分別寫出兩種收費(fèi)方式下該用戶應(yīng)該支付的費(fèi)用.

(2)若某用戶估計(jì)一個(gè)月內(nèi)上網(wǎng)的時(shí)間為20小時(shí),你認(rèn)為采用哪種方式較為合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,點(diǎn)落在點(diǎn)處,已知,連接,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像過點(diǎn),,與軸交于另一點(diǎn),且對稱軸是直線.

(1)求該二次函數(shù)的解析式;

(2)若上的一點(diǎn),作,當(dāng)面積最大時(shí),求的坐標(biāo);

(3)軸上的點(diǎn),過軸,與拋物線交于,過軸于.當(dāng)以、為頂點(diǎn)的三角形與、、為頂點(diǎn)的三角形相似時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位畫家有若干個(gè)邊長為的正方體,他在地面上把它們擺成如圖(三層)的形式,然后,他把露出的表面都涂上顏色.

1)圖中的正方體一共有多少個(gè)?

2)一點(diǎn)顏色都沒涂上顏色的正方體有多少個(gè)?

3)如果畫家按此方式擺成七層,那又要多少個(gè)正方體?同樣涂上顏色,又有多少個(gè)正方體沒有涂上一點(diǎn)顏色?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),A點(diǎn)坐標(biāo)為(-10,0),對角線ACOB相交于點(diǎn)DAC·OB=160.若反比例函數(shù)y=(x<0)的圖象經(jīng)過點(diǎn)D,并與BC的延長線交于點(diǎn)E,SOCESOAB=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車到黑龍灘(用C表示)開展社會實(shí)踐活動,車到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A13千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對應(yīng)點(diǎn)C1的坐標(biāo)為( 。

A. (﹣ B. (﹣ C. (﹣ D. (﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017山東省菏澤市,第20題,7分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象在第一象限交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,2),連接OA、OB,過BBDy軸,垂足為D,交OAC,若OC=CA

(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

(2)求AOB的面積.

查看答案和解析>>

同步練習(xí)冊答案