【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,AC和CB的延長線于點D,E,F.
(1)求證:∠F+∠FEC=2∠A;
(2)過B點作BM∥AC交FD于點M,試探究∠MBC與∠F+∠FEC的數量關系,并證明你的結論.
【答案】(1)證明見解析(2)∠MBC=∠F+∠FEC,證明見解析
【解析】試題分析:(1)根據三角形外角的性質,可得出∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,再根據∠A=∠ABC,即可得出答案;
(2)由BM∥AC,得出∠MBA=∠A,∠A=∠ABC,得出∠MBC=∠MBA+∠ABC=2∠A,結合(1)的結論證得答案即可.
(1)證明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,
∴∠F+∠FEC=∠F+∠A+∠ADE,
∵∠ADE=∠BDF,
∴∠F+∠FEC=∠A+∠ABC,
∵∠A=∠ABC,
∴∠F+∠FEC=∠A+∠ABC=2∠A.
(2)∠MBC=∠F+∠FEC.
證明:∵BM∥AC,
∴∠MBA=∠A,、
∵∠A=∠ABC,
∴∠MBC=∠MBA+∠ABC=2∠A,
又∵∠F+∠FEC=2∠A,
∴∠MBC=∠F+∠FEC.
科目:初中數學 來源: 題型:
【題目】知識是用來為人類服務的,我們應該把它們用于有意義的方面.下面就兩個情景請你作出評判.
情景一:從教室到圖書館,總有少數同學不走人行道而橫穿草坪,這是為什么呢?試用所學數學知識來說明這個問題.
情景二:A、B是河流l兩旁的兩個村莊,現要在河邊修一個抽水站向兩村供水,問抽水站修在什么地方才能使所需的管道最短?請在圖中表示出抽水站點P的位置,并說明你的理由:
你贊同以上哪種做法?你認為應用數學知識為人類服務時應注意什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在比例尺是1:4000的成都市城區(qū)地圖上,位于錦江區(qū)的九眼橋的長度約為3cm,它的實際長度用科學記數法表示為( 。
A.12×103cmB.1.2×102mC.1.2×104mD.0.12×105cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列各式計算正確的是( )
A. ﹣2a+5b=3abB. 6a+a=6a2
C. 3ab2﹣5b2a=﹣2ab2D. 4m2n﹣2mn2=2mn
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖
(1)請寫出在直角坐標系中的房子的A、B、C、D、E、F、G的坐標。
(2)源源想把房子向下平移3個單位長度,你能幫他辦到嗎?請作出相應圖案,并寫出平移后的7個點的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】體育課上,老師為了解女學生定點投籃的情況,隨機抽取8名女生進行每人4次定點投籃的測試,進球數的統(tǒng)計如圖所示.
(1)求女生進球數的平均數、中位數;
(2)投球4次,進球3個以上(含3個)為優(yōu)秀,全校有女生1200人,估計為“優(yōu)秀”等級的女生約為多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com