閱讀下面的材料:
小明遇到一個(gè)問題:如圖(1),在□ABCD中,點(diǎn)E是邊BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長(zhǎng)線交射線CD于點(diǎn)G. 如果,求的值.

他的做法是:過點(diǎn)E作EH∥AB交BG于點(diǎn)H,則可以得到△BAF∽△HEF.
請(qǐng)你回答:(1)AB和EH的數(shù)量關(guān)系為    ,CG和EH的數(shù)量關(guān)系為    ,的值為    .
(2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為    (用含a的代數(shù)式表示).

(3)請(qǐng)你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點(diǎn)E是BC延長(zhǎng)線上一點(diǎn),AE和BD相交于點(diǎn)F. 如果,那么的值為    (用含m,n的代數(shù)式表示).

(1),, ;(2);(3)

解析試題分析:本題的設(shè)計(jì)獨(dú)具匠心:由平行四邊形中的一個(gè)特殊的例子出發(fā)(第1問),推廣到平行四邊形中的一般情形(第2問),最后再通過類比、轉(zhuǎn)化到梯形中去(第3問).各種圖形雖然形式不一,但運(yùn)用的解題思想與解題方法卻是一以貫之:即通過構(gòu)造相似三角形,得到線段之間的比例關(guān)系,這個(gè)比例關(guān)系均統(tǒng)一用同一條線段來表達(dá),這樣就可以方便地求出線段的比值.本題體現(xiàn)了初中數(shù)學(xué)的類比、轉(zhuǎn)化、從特殊到一般等思想方法,有利于學(xué)生觸類旁通、舉一反三.(1)根據(jù)△BAF∽△HEF,可知兩三角形的相似比是3:1,所以AB=3EH;由EH∥AB、CD∥AB可得EH∥CD,故△BCG∽△BEH,而E為BC的中點(diǎn),所以兩三角形的相似比為2:1,所以CG=2EH;由平行四邊形對(duì)邊相等得,AB=CD,所以.
根據(jù)(1)的分析,易得.(3)本問體現(xiàn)“類比”與“轉(zhuǎn)化”的情形,將(1)(2)問中的解題方法推廣轉(zhuǎn)化到梯形中,如下圖所示.

試題解析:
解:(1)依題意,過點(diǎn)E作EH∥AB交BG于點(diǎn)H,如右圖1所示.則有△ABF∽△HEF,
,即AB=3EH
∵EH∥AB、CD∥AB可得EH∥CD,
∴△BCG∽△BEH,
又∵E為BC的中點(diǎn),
∴CG=2EH;

故填空依次為:,, .
同理根據(jù)(1)可以發(fā)現(xiàn):;

故填空為 .
如上圖所示,過點(diǎn)E作EH//AB交BD的延長(zhǎng)線于點(diǎn)H,則有EH//AB//CD
∵EH//CD
∴△BCD∽△BEF,
,即
又∵

∵EH//AB
∴△ABF∽△EHF

故填空為:.
考點(diǎn):1、相似形綜合題;2、平行四邊形的性質(zhì);3、梯形;4、相似三角形的判定與性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖9,在△ABC中,已知點(diǎn)D在BC上,聯(lián)結(jié)AD,使得,DC=3且 ﹦1﹕2.

(1)求AC的值;
(2)若將△ADC沿著直線AD翻折,使點(diǎn)C落點(diǎn)E處,AE交邊BC于點(diǎn)F,且AB∥DE,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,△ABC和△是以坐標(biāo)原點(diǎn)O為位似中心的位似圖形,且點(diǎn)B(3,1),B′(6,2).

(1)請(qǐng)你根據(jù)位似的特征并結(jié)合點(diǎn)B的坐標(biāo)變化回答下列問題: ①若點(diǎn)A(,3),則A′的坐標(biāo)為         ;②△ABC與△的相似比為        ;
(2)若△ABC的面積為m,求△A′B′C′的面積.(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,以點(diǎn)M(1,-1)為圓心,以為半徑作圓,與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),二次函數(shù)的圖象經(jīng)過點(diǎn)A、B、C,頂點(diǎn)為E.

(1)求此二次函數(shù)的表達(dá)式;
(2)設(shè)∠DBC=a,∠CBE=b,求sin(a-b)的值;
(3)坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似.若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC是格點(diǎn)三角形(三角形的三個(gè)頂點(diǎn)都是小正方形的頂點(diǎn)).

(1)若以格點(diǎn)P、A、B為頂點(diǎn)的三角形與△ABC相似但不全等,請(qǐng)作出所有符合要求的點(diǎn)P;
(2)請(qǐng)寫出符合條件格點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

提出問題

如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
類比探究
如圖2,在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說明理由.
拓展延伸
如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)為1,△ABC和△DEF的頂點(diǎn)都在方格紙的格點(diǎn)上.

(1)判斷△ABC和△DEF是否相似,并說明理由;
(2)P1,P2,P3,P4,P5,D,F(xiàn)是△DEF邊上的7個(gè)格點(diǎn),請(qǐng)?jiān)谶@7個(gè)格點(diǎn)中選取3個(gè)點(diǎn)作為三角形的頂點(diǎn),使構(gòu)成的三角形與△ABC相似(要求寫出2個(gè)符合條件的三角形,并在圖中連結(jié)相應(yīng)線段,不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在邊長(zhǎng)為6的菱形ABCD中,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A→B→C向終點(diǎn)C運(yùn)動(dòng),連接DM交AC于點(diǎn)N.
(1)如圖1,當(dāng)點(diǎn)M在AB邊上時(shí),連接BN

①試說明:;
②若∠ABC=60°,AM=4,求點(diǎn)M到AD的距離.
(2)如圖2,若∠ABC=90°,記點(diǎn)M運(yùn)動(dòng)所經(jīng)過的路程為x(6≤x≤12).試問:x為何值時(shí),△ADN為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,點(diǎn)B在線段AC上,點(diǎn)D,E在AC同側(cè),∠A=∠C=90°,BD⊥BE,AD=BC.

(1)求證:AC=AD+CE;
(2)若AD=3,CE=5,點(diǎn)P為線段AB上的動(dòng)點(diǎn),連接DP,作PQ⊥DP,交直線BE于點(diǎn)Q;
(i)當(dāng)點(diǎn)P與A,B兩點(diǎn)不重合時(shí),求的值;
(ii)當(dāng)點(diǎn)P從A點(diǎn)運(yùn)動(dòng)到AC的中點(diǎn)時(shí),求線段DQ的中點(diǎn)所經(jīng)過的路徑(線段)長(zhǎng).(直接寫出結(jié)果,不必寫出解答過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案