【題目】探索題:

x1)(x1)=x1

x1)(xx1)=x1

x1)(xxx1)=x1

x1)(x xxx1)=x1

1)觀察以上各式并猜想:

①(x1)(xxx xxx1)=     

②(x1)(xxxxxx1)=     

2)請利用上面的結(jié)論計算:

①(-2+(-2+(-2+(-2)+1

②若 xxxxx10,求 x的值.

【答案】1)①x7-1,②xn+1-1;(2)①,②1

【解析】

1)①②根據(jù)已知式子進行探尋規(guī)律即可;
2)①將原始乘以(-2-1)后除以(-2-1),再運用公式計算即可;
②將原始乘以(x-1)后除以(x-1),再運用公式計算即可.

1)①(x-1)(x6+x5+x4+x3+x2+x+1=x7-1,
②(x-1)(xn+xn-1+xn-2+…+x3+x2+x+1=xn+1-1,
故答案為x7-1,xn+1-1
2)①(-250+-249+-248+…+-2+1=
=-2-1×[-250+-249+-248+…+-2+1]÷-2-1
=[-251-1]÷-3
=-251-1÷-3
= ,
x1007+x1006+…+x3+x2+x+1
=x-1x1007+x1006+…+x3+x2+x+1÷x-1
=x1008-1÷x-1),
x1008-1=0,
x1008=1
x3024=x10083=1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,三角形△ABC為等腰直角三角形,AC=BCBCx軸于點D.

(1)A(-4,0),C(0,2),求點B的坐標;

(2)若∠EDB=ADC,問∠ADE與∠CAD滿足怎樣的關系?并證明.

(3)AD平分∠BAC,A(-4,0),D(m,0)B的縱坐標為n,試探究mn之間滿足怎樣的關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知∠B=∠C90°,AM平分∠DABDM平分∠ADC.

(1)求證:MBC的中點.

(2) 求證:ADABCD.

(3)SAMD=______S四邊形ABCD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙OABC的外接圓,且AB=BC=CD,ABCD,連接BD.

(1)求證:BD是⊙O的切線;

(2)若AB=10,cosBAC=,求BD的長及⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調(diào)查,統(tǒng)計整理并繪制了如圖兩幅尚不完整的統(tǒng)計圖.請根據(jù)以上信息解答下列問題:

①課外體育鍛煉情況扇形統(tǒng)計圖中,經(jīng)常參加所對應的圓心角的度數(shù)為_________.

②請補全條形統(tǒng)計圖.

③該校共有1500名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點A坐標為(2,0),Bx軸負半軸上,Cy軸正半軸上,∠ACB=90°,∠ABC=30°.

(1)求點B坐標;

(2)如圖2,點PB出發(fā),沿線段BC運動,P運動速度為每秒2個單位長度,設運動時間為t秒,用含t的式子表示三角形△OBP的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】規(guī)定:四條邊對應相等,四個角對應相等的兩個四邊形全等.某學習小組在研究后發(fā)現(xiàn)判定兩個四邊形全等需要五組對應條件,于是把五組條件進行分類研究,并且針對二條邊和三個角對應相等類型進行研究提出以下幾種可能:

① AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;

② AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1

③ AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;

④ AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1

其中能判定四邊形ABCD和四邊形A1B1C1D1全等有( )個

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過點C,連接AC,OD交于點E.

(1)證明:ODBC;

(2)若tanABC=2,證明:DA與⊙O相切;

(3)在(2)條件下,連接BD交于⊙O于點F,連接EF,若BC=1,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE=EOC

1)求∠AOE的度數(shù);

2)將射線OE繞點O逆時針旋轉(zhuǎn)°α360°)到OF

①如圖2,當OF平分∠BOE時,求∠DOF的度數(shù);

②若∠AOF=120°時,直接寫出的度數(shù).

查看答案和解析>>

同步練習冊答案