【題目】把下列各數(shù)按要求分類
+8.3,-4,-0.8,-,0,π,90,-|-24|,15%, 中,
負數(shù)有______________________________,
分數(shù)有______________________________.
整數(shù)有______________________________.
有理數(shù)有______________________________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC8 cm,BC6 cm,∠C90°,EG4 cm,∠EGF90°,O是△EFG斜邊上的中點. 如圖乙,若整個△EFG從圖甲的位置出發(fā),以1 cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1 cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移. 設(shè)運動時間為x(s),FG的延長線交AC于H,四邊形OAHP的面積為y(cm2)(提示:不考慮點P與G、F重合的情況).
(1)當x為何值時,OP∥AC?
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形中, ,對角線平分.
(1)如圖1,若,且,試探究邊、與對角線的數(shù)量關(guān)系并說明理由.
(2)如圖2,若將(1)中的條件“”去掉,(1)中的結(jié)論是否成立?請說明理由.
(3)如圖3,若,探究邊、與對角線的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界杯比賽中,根據(jù)場上攻守形勢,守門員會在門前來回跑動,如果以球門線為基準,向前跑記作正數(shù),返回則記作負數(shù),一段時間內(nèi),某守門員的跑動情況記錄如下(單位:):,,,,,,,.(假定開始計時時,守門員正好在球門線上)
(1)守門員最后是否回到球門線上?
(2)守門員在這段時間內(nèi)共跑了多少米?
(3)如果守門員離開球門線的距離超過10米(不包括10米),則對方球員挑射極可能造成破門.請問在這一時間段內(nèi),對方球員有幾次挑射破門的機會?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一象限C,D兩點,坐標軸交于A、B兩點,連結(jié)OC,OD(O是坐標原點).
(1)利用圖中條件,求反比例函數(shù)的解析式和m的值;
(2)求△DOC的面積.
(3)雙曲線上是否存在一點P,使得△POC和△POD的面積相等?若存在,給出證明并求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:如圖1,在平行四邊形ABCD中,E是AD上一點,AE=AB,∠EAB=60°,過點E作直線EF,在EF上取一點G.使得∠EGB=∠EAB,連接AG.
求證:EG=AG+BG.
小明同學(xué)的思路是:作∠CAM=∠EAB交CE于點H,構(gòu)造全等三角形,經(jīng)過推理解決問題.
參考小明同學(xué)的思路,探究并解決下列問題:
(1)完成上面問題中的證明;
(2)如果將原問題中的“∠EAB=60°”改為“∠EAB=90°”,原問題中的其它條件不變(如圖2),請?zhí)骄烤段EC、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
解:線段EG、AG、BG之間的數(shù)量關(guān)系為___________________________________________________.證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2(a≠0)與一次函數(shù)y=kx-2的圖象相交于A.B兩點,如圖所示,其中A(-1,-1).
(1)求二次函數(shù)和一次函數(shù)的解析式;
(2)求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,折疊矩形ABCD的一邊AD,使點D落在BC邊上的點F處,已知AB=8,BC=10,
(1)求BF的長;
(2)求△ECF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com