【題目】如圖,直線y=ax+1x軸、y軸分別相交于A、B兩點(diǎn),與雙曲線y=x0)相交于點(diǎn)P,PCx軸于點(diǎn)C,且PC=2,點(diǎn)A的坐標(biāo)為(﹣20).

1)求雙曲線的解析式;

2)若點(diǎn)Q為雙曲線上點(diǎn)P右側(cè)的一點(diǎn),且QHx軸于H,當(dāng)以點(diǎn)Q、C、H為頂點(diǎn)的三角形與AOB相似時(shí),求點(diǎn)Q的坐標(biāo).

【答案】1;(2Q41)或Q1+,22).

【解析】試題分析:1)根據(jù)已知條件易求P點(diǎn)的坐標(biāo)P點(diǎn)的坐標(biāo)代入y,即可求得k從而求得雙曲線的解析式;(2設(shè)Q點(diǎn)坐標(biāo)為(a,b),根據(jù)Q點(diǎn)在雙曲線上求得a、b之間的關(guān)系,再求得BOAO的長(zhǎng),分QCH∽△BAOQCH∽△ABO兩種情況求Q點(diǎn)的坐標(biāo).

試題解析:

(1)A(2,0)代入yax1中求得a,所以yx1,求得P點(diǎn)坐標(biāo)為(2,2)

P(2,2)代入y求得k4,所以雙曲線的解析式為y.

(2)設(shè)Q點(diǎn)坐標(biāo)為(ab)

因?yàn)?/span>Q(a,b)y上,所以b.yx1,可得B點(diǎn)坐標(biāo)為(01),則BO1.A點(diǎn)坐標(biāo)為(20),得AO2.

當(dāng)△QCH∽△BAO時(shí),,即,所以a22ba22×,解得a4a=-2(舍去),所以Q點(diǎn)坐標(biāo)為(4,1)

當(dāng)△QCH∽△ABO時(shí),,即,所以2a4,解得a1a1(舍去),所以Q點(diǎn)坐標(biāo)為(1,22)

綜上所述,Q點(diǎn)坐標(biāo)為(41)(1,22)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校打算招聘英語(yǔ)教師。對(duì)應(yīng)聘者進(jìn)行了聽(tīng)、說(shuō)、讀、寫(xiě)的英語(yǔ)水平測(cè)試,其中甲、乙兩名應(yīng)聘者的成績(jī)(百分制)如下表所示。

1)如果學(xué)校想招聘說(shuō)、讀能力較強(qiáng)的英語(yǔ)教師,聽(tīng)、說(shuō)、讀、寫(xiě)成績(jī)按照2431的比確定,若在甲、乙兩人中錄取一人,請(qǐng)計(jì)算這兩名應(yīng)聘者的平均成績(jī)(百分制)。從他們的成績(jī)看,應(yīng)該錄取誰(shuí)?

2)學(xué)校按照(1)中的成績(jī)計(jì)算方法,將所有應(yīng)聘者的最后成績(jī)繪制成如圖所示的頻數(shù)分布直方圖(每組分?jǐn)?shù)段均包含左端數(shù)值,不包含右端數(shù)值,如最后左邊一組分?jǐn)?shù)為:)。

①參加該校本次招聘英語(yǔ)教師的應(yīng)聘者共有______________人(直接寫(xiě)出答案即可)。

②學(xué)校決定由高分到低分錄用3名教師,請(qǐng)判斷甲、乙兩人能否被錄用?并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個(gè)幾何體的小正方體的個(gè)數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索規(guī)律:將連續(xù)的偶2,4,6,8,,排成如表:

1)請(qǐng)你求出十字框中的五個(gè)數(shù)的和;

2)設(shè)中間的數(shù)為x,請(qǐng)你用含x的式子表示十字框中的五個(gè)數(shù)的和;

3)若將十字框上下左右移動(dòng),可框住另外的五個(gè)數(shù),這五個(gè)數(shù)的和能等于2018嗎?如能,寫(xiě)出這五個(gè)數(shù),如不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是梯形,ADBC,ACBD,且ACBD,如果梯形ABCD的中位線長(zhǎng)是5,那么這個(gè)梯形的高AH___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了打造鐵力旅游景點(diǎn),市旅游局打算將依吉密河中一段長(zhǎng)1800米的河道整治任務(wù)交由甲、乙兩個(gè)工程隊(duì)來(lái)完成.已知,甲工程隊(duì)每天整治60米,乙工程隊(duì)每天整治40米.

(1)若甲、乙兩個(gè)工程隊(duì)接龍來(lái)完成,共用時(shí)35天,求甲、乙兩個(gè)工程隊(duì)分別整治多長(zhǎng)的河道?

(2)若乙工程隊(duì)先整治河道10天,甲工程隊(duì)再參加兩個(gè)工程隊(duì)一起來(lái)完成剩余河道整治任務(wù),求整段河道整治任務(wù)共用時(shí)多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠AOC65°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE90°)

1)如圖,若直角三角板DOE的一邊OD放在射線OA上,則∠COE   

2)如圖,將直角三角板DOE繞點(diǎn)O順時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠AOE,求∠COD的度數(shù);

3)如圖,將直角三角板DOE繞點(diǎn)O任意轉(zhuǎn)動(dòng),如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售一種牛奶,進(jìn)價(jià)為每箱24元,規(guī)定售價(jià)不低于進(jìn)價(jià).現(xiàn)在的售價(jià)為每箱36元,每月可銷售60箱.市場(chǎng)調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降價(jià)1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價(jià)x(x為正整數(shù)),每月的銷量為y箱.

1)寫(xiě)出yx中間的函數(shù)關(guān)系式和自變量的取值范圍;

2)超市如何定價(jià),才能使每月銷售牛奶的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)閱讀理解:如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點(diǎn),若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關(guān)系.

解決此問(wèn)題可以用如下方法:延長(zhǎng)AE交DC的延長(zhǎng)線于點(diǎn)F,易證△AEB≌△FEC,得到AB=FC,從而把AB,AD,DC轉(zhuǎn)化在一個(gè)三角形中即可判斷.

AB、AD、DC之間的等量關(guān)系為   ;

(2)問(wèn)題探究:如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長(zhǎng)線交于點(diǎn)F,E是BC的中點(diǎn),若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論.

(3)問(wèn)題解決:如圖③,AB∥CF,AE與BC交于點(diǎn)E,BE:EC=2:3,點(diǎn)D在線段AE上,且∠EDF=∠BAE,試判斷AB、DF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案