【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC,交AC于點(diǎn)D,AF⊥BD,垂足為點(diǎn)E,交BC于點(diǎn)F.求證:AD=CF.
【答案】見解析
【解析】
作輔助線,證明∠BAG=∠C=45°,再利用同角的余角相等得∠ABG=∠CAF,證明△ABG≌△CAF(ASA),得到AG=CF,最后證明△GAE≌△DAE(ASA),等量代換即可解題.
證明:過(guò)點(diǎn)A作∠BAC的平分線AG,交BD于點(diǎn)G,
∵AB=AC,
∴∠ABC=∠C.
∵∠BAC=90°,
∴∠ABC=∠C=45°.
∵AG平分∠BAC,
∴∠BAG=∠CAG=∠ABC=45°,
∴∠BAG=∠C.
∵AE⊥BD,
∴∠ABG+∠BAE=90°.
∵∠CAF+∠BAE=90°,
∴∠ABG=∠CAF.
在△ABG和△CAF中,,
∴△ABG≌△CAF(ASA),
∴AG=CF.
∵BD平分∠ABC,
∴∠ABG=∠CAF,
∴∠CAF=22.5°.
∵∠CAG=45°,
∴∠GAE=∠CAG-∠CAF=45-22.5°=22.5°,
∴∠GAE=∠CAF.
∵AE⊥BD,
∴∠AEG=∠AED=90°.
在△GAE和△DAE中,,
∴△GAE≌△DAE(ASA),
∴AG=AD.
∵AG=CF,
∴AD=CF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,我們不妨將橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)稱之為“湘一點(diǎn)”.
(1)求函數(shù)y=x-3的圖象上所有“湘一點(diǎn)”的坐標(biāo);
(2)若直線y=mx+m(m為常數(shù))與直線y=x-2的交點(diǎn)為“湘一點(diǎn)”,試求出整數(shù)m的值.
(3)若直線y=-x+b、直線y=3、直線y=x+2所圍成的平面圖形中(不含邊界)共有6個(gè)“湘一點(diǎn)”,試求出常數(shù)b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖有A、B兩個(gè)大小均勻的轉(zhuǎn)盤,其中A轉(zhuǎn)盤被分成3等份,B轉(zhuǎn)盤被分成4等份,并在每一份內(nèi)標(biāo)上數(shù)字.小明和小紅同時(shí)各轉(zhuǎn)動(dòng)其中一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線時(shí)視為無(wú)效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的k,將B轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的b.
(1)請(qǐng)用列表或畫樹狀圖的方法寫出所有的可能;
(2)求一次函數(shù)y=kx+b的圖象經(jīng)過(guò)一、二、四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,分別在AB,BC的延長(zhǎng)線上截取點(diǎn)G,H,使BG=BH,延長(zhǎng)AC交GH于點(diǎn)K,且AK=KG,則∠BAC的大小等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】海洋館的門票價(jià)格規(guī)定如表:
購(gòu)票人數(shù)(人) | 150人 | 51100人 | 100人以上 |
門票單價(jià)(元/人) | 60 | 55 | 50 |
某校七年級(jí)一、二兩班共102人去游公園,其中一班人數(shù)較多,經(jīng)計(jì)算,如果兩班都以班為單位分別購(gòu)買與實(shí)際人數(shù)相同的票,則一共應(yīng)付5850元。
請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
①兩班各有多少學(xué)生?
②如果兩班作為一個(gè)團(tuán)體購(gòu)票,可以節(jié)省多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB∥CD,∠1=∠2,∠3=∠4.
(1)求證:AD∥BE;
(2)若∠B=∠3=2∠2,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )
A. 如圖1,展開后測(cè)得∠1=∠2
B. 如圖2,展開后測(cè)得∠1=∠2且∠3=∠4
C. 如圖3,測(cè)得∠1=∠2
D. 如圖4,展開后再沿CD折疊,兩條折痕的交點(diǎn)為O,測(cè)得OA=OB,OC=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié),在大明湖舉行第七屆會(huì)民健身運(yùn)動(dòng)會(huì)龍舟比賽中,甲、乙兩隊(duì)在500米的賽道上,所劃行的路程y(m)與時(shí)間x(min)之間的函數(shù)關(guān)系如圖所示,下列說(shuō)法,其中正確的有( 。
①乙隊(duì)比甲隊(duì)提前0.25min到達(dá)終點(diǎn);
②0.5min后,乙隊(duì)比甲隊(duì)每分鐘快40m;
③當(dāng)乙隊(duì)劃行110m時(shí),此時(shí)落后甲隊(duì)15m;
④自1.5min開始,甲隊(duì)若要與乙隊(duì)同時(shí)到達(dá)終點(diǎn),甲隊(duì)的速度需要提高到260m/min.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com