【題目】如圖,△ABC中,AB=AC,分別在AB,BC的延長線上截取點G,H,使BG=BH,延長ACGH于點K,且AK=KG,則∠BAC的大小等于( 。

A. B. C. D.

【答案】B

【解析】

根據(jù)等腰三角形的的性質(zhì),外角的性質(zhì),用含a的代數(shù)式在三角形CHK中表示出各角度數(shù),利用內(nèi)角和求解即可.

由題可知∠ABC=∠ACB, ∠AGK=∠A =∠H,(等邊對等角)

設(shè)∠A=a,則∠AGK=∠A =∠H=a,

∠ACB=∠HCK=(180°-a),∠AKG=180°-2a

∵∠AKH=∠A+∠G=2a,(外角的性質(zhì)),

△CHK中,∠H+∠HCK+∠CKH =a+2a+(180°-a)=180°,解得:a=36°,

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖17張長為a,寬為bab)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足( )

A. a=b B. a=2b

C. a=3b D. a=4b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰ABC中,三邊分別為ab、c,其中a=4,bc恰好是方程的兩個實數(shù)根,則ABC的周長為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(﹣4, ),B(﹣1,2)是一次函數(shù)y=kx+b與反比例函數(shù) (m≠0,m<0)圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當x取何值時,一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某年的日歷表,在此日歷表上可以用一個矩形圈出3×3個位置的9個數(shù)(如3,4,5,10,11,12,17,18,19).若用這樣的矩形圈圈這張日歷表的9個數(shù),則圈出的9個數(shù)的和不可能為下列數(shù)中的(  )

A. 81 B. 90 C. 108 D. 216

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,AB=AC,過邊AB上一點NAB的垂線交BC于點M.

(1)如圖1,若∠A=40°,求∠NMB的度數(shù)

(2)如圖2,若∠A=70°,求∠NMB的度數(shù)

(3)你可以再分別給出幾個∠A(∠A為銳角)的度數(shù),你發(fā)現(xiàn)規(guī)律了嗎?寫出當∠A為銳角時,你猜想出的規(guī)律,并進行證明.

(4)∠A為直角、鈍角時,是否還有(3)中的結(jié)論(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC,交AC于點D,AF⊥BD,垂足為點E,交BC于點F.求證:AD=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD和過點C的切線互相垂直,垂足為D,直線DC與AB的延長線相交于P.弦CE平分∠ACB,交直徑AB于點F,連結(jié)BE.
(1)求證:AC平分∠DAB;
(2)探究線段PC,PF之間的大小關(guān)系,并加以證明;
(3)若tan∠CEB= ,BE=5 ,求AC、BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),A1B1和A2B2是水面上相鄰的兩條賽道(看成兩條互相平行的線段).甲是一名游泳運動健將,乙是一名游泳愛好者,甲在賽道A1B1上從A1處出發(fā),到達B1后,以同樣的速度返回A1處,然后重復上述過程;乙在賽道A2B2上以1.5m/s的速度從B2處出發(fā),到達A2后以相同的速度回到B2處,然后重復上述過程(不考慮每次折返時的減速和轉(zhuǎn)向時間).若甲、乙兩人同時出發(fā),設(shè)離開池邊B1B2的距離為y(m),運動時間為t(s),甲游動時,y(m)與t(s)的函數(shù)圖象如圖2所示.
(1)賽道的長度是m,甲的速度是m/s;當t=s時,甲、乙兩人第一次相遇,當t=s時,甲、乙兩人第二次相遇?
(2)第三次相遇時,兩人距池邊B1B2多少米.

查看答案和解析>>

同步練習冊答案