【題目】今年是脫貧攻堅最后一年,某鎮(zhèn)擬修一條連通貧困山區(qū)村的公路,現(xiàn)有甲、乙兩個工程隊.若甲、乙合作,36天可以完成,需用600萬元;若甲單獨做20天后,剩下的由乙做,還需40天才能完成,這樣所需550萬元.

1)求甲、乙兩隊單獨完成此項工程各需多少天?

2)求甲、乙兩隊單獨完成此項工程各需多少萬元?

【答案】(1)甲、乙兩隊單獨完成此項工程分別需180天、45天;(2)甲、乙兩隊單獨完成此項工程分別需要費用1050萬元、487.5萬元.

【解析】

1)設(shè)甲、乙單獨完成此項工程分別需要xy天,然后根據(jù)題意列出方程求解即可;

2)設(shè)單獨完成此項工程,甲需要費用m萬元,乙需要費用n萬元,找到等量關(guān)系列出方程,求解即可.

解:(1)設(shè)甲、乙單獨完成此項工程分別需要xy天,

由題意得: ,

解得: ,經(jīng)檢驗,所得的解就是原分式方程組的解,且符合題意,

因此甲、乙單獨完成此項工程分別需要180天、45天;

2)設(shè)單獨完成此項工程,甲需要費用m萬元,乙需要費用n萬元,依題意得:

解得:

答:甲、乙兩隊單獨完成此項工程分別需180天、45天;甲、乙兩隊單獨完成此項工程分別需要費用1050萬元、4875萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線x軸正半軸于點A,交y軸負半軸于點B,點C在線段OA上,將沿直線BC翻折,點Ay軸上的點D(0,4)恰好重合.

(1)求直線AB的表達式.

(2)已知點E(0,3),點P是直線BC上的一個動點(點P不與點B重合),連接PD,PE,當PDE的周長取得最小值時,求點P的坐標。

(3)在坐標軸上是否存在一點H,使得HABABC的面積相等?若存在,求出滿足條件的點H的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4BC=5,∠ABC=60° 按以下步驟作圖:C為圓心,以適當長為半徑做弧,交CB、CDMN兩點;分別以MN為圓心,以大于MN的長為半徑作弧,兩弧相交于點E,作射線CEBD于點O,交AD邊于點F;則BO的長度為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:

1)如圖①在中,的高,點上任意一點,若的最小值為_    ;

2)如圖②,在等腰中,的垂直平分線,分別交于點,,求的周長;

問題解決:

3)如圖③,某公園管理員擬在園內(nèi)規(guī)劃一個區(qū)域種植花卉,且為方便游客游覽,欲在各頂點之間規(guī)劃道路,滿足的距離為.為了節(jié)約成本,要使得之和最短,試求的最小值(路寬忽略不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如圖1和圖2,四邊形ABCD中,已知ABAD,∠BAD90°,點E、F分別在BCCD上,∠EAF45°.

1如圖1,若∠B、∠ADC都是直角,把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,使ABAD重合,直接寫出線段BE、DFEF之間的數(shù)量關(guān)系   ;

如圖2,若∠B、∠D都不是直角,但滿足∠B+D180°,線段BE、DFEF之間的結(jié)論是否仍然成立,若成立,請寫出證明過程;若不成立,請說明理由.

2)拓展:如圖3,在△ABC中,∠BAC90°,ABAC2.點D、E均在邊BC邊上,且∠DAE45°,若BD1,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠B30°DBC上一點,連接AD,把ABD沿直線AD折疊,點B落在B處,連接B'C,若AB'C是直角三角形,則BD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣2x+cx軸于點A3,0),交y軸于點B,拋物線y=﹣x2+bx+c經(jīng)過點A,B

1)求拋物線的解析式;

2)點Mm,0)是線段OA上一動點(點M不與點O,A重合),過點My軸的平行線,交直線AB于點P,交拋物線于點N,若NPAP,求m的值;

3)若拋物線上存在點Q,使∠QBA45°,請直接寫出相應(yīng)的點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在函數(shù)的學(xué)習(xí)中,我們經(jīng)歷了確定函數(shù)表法式﹣畫函數(shù)圖象﹣利用函數(shù)圖象研究函數(shù)性質(zhì)﹣利用圖象解決問題的學(xué)習(xí)過程.在畫函數(shù)圖象時,我們常常通過描點或平移或翻折的方法畫函數(shù)圖象.小明根據(jù)學(xué)到的函數(shù)知識探究函數(shù)y1的圖象與性質(zhì)并利用圖象解決問題.小明列出了如表y1x的幾組對應(yīng)的值:

x

4

3

2

1

0

1

2

3

4

y1

4

2

m

2

4

2

n

1)根據(jù)表格中xy1的對應(yīng)關(guān)系可得m______,n______;

2)在平面直角坐標系中,描出表格中各點,兩出該函數(shù)圖象;根據(jù)函數(shù)圖象,寫出該函數(shù)的一條性質(zhì)______

3)當函數(shù)y1的圖象與直線y2mx+1有三個交點時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯誤的是(  )

A.弦的垂直平分線必平分弦所對的兩條。

B.擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,2點朝上是隨機事件.

C.RtABC的兩邊長恰為方程x2-7x+12=0的兩個實數(shù)根,則其斜邊長為5

D.若直線y=ax-b與直線y=mx+n交于點(2,-1),則方程的解為

查看答案和解析>>

同步練習(xí)冊答案