【題目】某廠家生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD,線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元),銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.

(1)請解釋圖中點D的實際意義.

(2)求線段CD所表示的y2與x之間的函數(shù)表達式.

(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

【答案】(1)點D的橫坐標、縱坐標的實際意義:當(dāng)產(chǎn)量為140kg時,該產(chǎn)品每千克生產(chǎn)成本與銷售價相等,都為40元

(2)y2與x之間的函數(shù)表達式為y2=﹣x+124(0≤x≤140)

(3)當(dāng)該產(chǎn)品的質(zhì)量為80kg時,獲得的利潤最大,最大利潤為2560元

【解析】

試題分析:(1)點D的橫坐標、縱坐標的實際意義:當(dāng)產(chǎn)量為140kg時,該產(chǎn)品每千克生產(chǎn)成本與銷售價相等,都為40元;

(2)根據(jù)線段AB經(jīng)過的兩點的坐標利用待定系數(shù)法確定一次函數(shù)的表達式即可;

(3)先求出銷售價y2與產(chǎn)量x之間的函數(shù)關(guān)系,利用:總利潤=每千克利潤×產(chǎn)量列出有關(guān)x的二次函數(shù),求得最值即可.

試題解析:(1)點D的實際意義:當(dāng)產(chǎn)量為140kg時,該產(chǎn)品每千克生產(chǎn)成本與銷售價相等,都為40元.

(2)設(shè)線段CD所表示的y2與x之間的函數(shù)表達式為y2=k1x+b1,

點(0,124),(140,40)在函數(shù)y2=k1x+b1的圖象上

,解得:,

y2與x之間的函數(shù)表達式為y2=﹣x+124(0≤x≤140);

(3)設(shè)線段AB所表示的y1與x之間的函數(shù)表達式為y1=k2x+b2,

點(0,60),(100,40)在函數(shù)y1=k2x+b2的圖象上

,解得:

y1與x之間的函數(shù)表達式為y1=﹣x+60(0≤x≤100)

設(shè)產(chǎn)量為x千克時,獲得的利潤為W元

①當(dāng)0≤x≤100時,W=[(﹣x+124)﹣(﹣x+60)]x=﹣(x﹣80)2+2560,

當(dāng)x=80時,W的值最大,最大值為2560元.

②當(dāng)100≤x≤140時,W=[(﹣x+124)﹣40]x=﹣(x﹣70)2+2940

由﹣<0知,當(dāng)x≥70時,W隨x的增大而減小

當(dāng)x=100時,W的值最大,最大值為2400元.

2560>2400,

當(dāng)該產(chǎn)品的質(zhì)量為80kg時,獲得的利潤最大,最大利潤為2560元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,A1B1A2、A2B2A3、A3B3A4…均為等邊三角形,分別連接A1B2,連接A2B3….若OA1=a,從左往右的陰影面積依次記作S1、S2、S3…Sn.則Sn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】判斷題(下列方程中,是一元二次方程的在括號內(nèi)劃“√”,不是一元二次方程的,在括號內(nèi)劃“×”)|x2+2x|=4 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交C點,點A的坐標為(2,0),點C的坐標為(0,3)它的對稱軸是直線x=

(1)求拋物線的解析式;

(2)M是線段AB上的任意一點,當(dāng)△MBC為等腰三角形時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠A=50°30′,則它的余角度數(shù)為_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用字母表示的實數(shù)m﹣2有算術(shù)平方根,則m取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點P(a,b)在第二象限,則Q(-a2-1,|ab|+2)在第( )象限

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在等邊三角形ABC中,點D是邊BC的中點,AC=8,BD=______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,適合采用全面調(diào)查(普查)方式的是(

A. 對漓江水質(zhì)情況的調(diào)查. B. 對端午節(jié)期間市場上粽子質(zhì)量情況的調(diào)查.

C. 對某班50名同學(xué)體重情況的調(diào)查. D. 對某類煙花爆竹燃放安全情況的調(diào)查.

查看答案和解析>>

同步練習(xí)冊答案