【題目】如圖,A型、B型、C型三張矩形卡片的邊長如圖所示,將三張矩形卡片分別放入三個信封中,三個信封的外表完全相同;
(1)從這三個信封中隨機抽取1個信封,則抽中A型矩形的概率為______;
(2)先從這三個信封中隨機抽取1個信封(不放回),再從余下的兩個信封中隨機抽取1個信封,求事件“兩次抽中的矩形卡片能拼成(無重疊無縫隙)一個新矩形”發(fā)生的概率.(列表法或樹狀圖)
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,經(jīng)過等邊的頂點,(圓心在內),分別與,的延長線交于點,,連結,交于點.
(1)求證:.
(2)當,時,求的長。
(3)設,.
①求關于的函數(shù)表達式;
②如圖2,連結,,若的面積是面積的10倍,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點,頂點坐標且開口向下,則下列結論:①拋物線經(jīng)過點;②;③關于的方程有兩個不相等的實數(shù)根;④對于任意實數(shù),總成立。其中結論正確的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=2,AD=4,對角線AC,BD相交于點O,且E,F,G,H分別是AO,BO,CO,DO的中點,則下列說法正確的是( )
A.EH=HGB.四邊形EFGH是平行四邊形
C.AC⊥BDD.的面積是的面積的2倍
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊中,AB=6,點D在BC上,BD=4,點E為邊AC上一動點(不與點C重合),關于DE的軸對稱圖形為.
(1)當點F在AC上時,求證:DF//AB;
(2)設的面積為S1,的面積為S2,記S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,請說明理由;
(3)當B,F,E三點共線時。求AE的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,tanA=,AC=6,以BC為斜邊向右側作等腰直角△EBC,P是BE延長線上一點,連接PC,以PC為直角邊向下方作等腰直角△PCD,CD交線段BE于點F,連接BD.
(1)求證:PC:CD=CE:BC;
(2)若PE=n(0<n≤4),求△BDP的面積;(用含n的代數(shù)式表示)
(3)當△BDF為等腰三角形時,請直接寫出線段PE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線過點,且與直線交于B、C兩點,點B的坐標為.
(1)求拋物線的解析式;
(2)點D為拋物線上位于直線上方的一點,過點D作軸交直線于點E,點P為對稱軸上一動點,當線段的長度最大時,求的最小值;
(3)設點M為拋物線的頂點,在y軸上是否存在點Q,使?若存在,求點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知邊長為4的正方形ABCD,P是BC邊上一動點(與B,C不重合),連結AP,作PE⊥AP交∠BCD的外角平分線于E,設BP=x,△PCE面積為y,則y與x的函數(shù)關系式是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.
(1)求小張騎自行車的速度;
(2)求小張停留后再出發(fā)時y與x之間的函數(shù)表達式;
(3)求小張與小李相遇時x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com