【題目】 在平面直角坐標(biāo)系中,有兩條拋物線關(guān)于x軸對(duì)稱,且它們的頂點(diǎn)相距6個(gè)單位長(zhǎng)度,若其中一條拋物線的函數(shù)表達(dá)式為y=﹣x2+4x+2m,則m的值是( 。

A.B.C.1D.

【答案】D

【解析】

根據(jù)拋物線y=﹣x2+4x+2m,得到頂點(diǎn)坐標(biāo)為(2,2m+4),根據(jù)兩條拋物線關(guān)于x軸對(duì)稱,得到另一條拋物線頂點(diǎn)坐標(biāo)為(2,﹣2m4),根據(jù)兩頂點(diǎn)相距6個(gè)單位長(zhǎng)度,得到關(guān)于m的絕對(duì)值方程,解方程即可.

解:一條拋物線的函數(shù)表達(dá)式為y=﹣x2+4x+2m,

這條拋物線的頂點(diǎn)為(2,2m+4),

關(guān)于x軸對(duì)稱的拋物線的頂點(diǎn)

它們的頂點(diǎn)相距6個(gè)單位長(zhǎng)度.

∴|2m+4﹣(﹣2m4|6

∴4m+8±6,

當(dāng)4m+86時(shí),m,

當(dāng)4m+8=﹣6時(shí),m,

∴m的值是

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017四川省達(dá)州市,第16題,3分)如圖,矩形ABCD中,EBC上一點(diǎn),連接AE,將矩形沿AE翻折,使點(diǎn)B落在CDF處,連接AF,在AF上取點(diǎn)O,以O為圓心,OF長(zhǎng)為半徑作⊙OAD相切于點(diǎn)P.若AB=6,BC=,則下列結(jié)論:①FCD的中點(diǎn);②⊙O的半徑是2;AE=CE;.其中正確結(jié)論的序號(hào)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,請(qǐng)根據(jù)排列規(guī)律完成下列問(wèn)題:

1)填寫(xiě)下表:

圖形序號(hào)

菱形個(gè)數(shù)(個(gè))

3

7

________

________

……

……

2)根據(jù)表中規(guī)律猜想,圖n中菱形的個(gè)數(shù)_______(用含n的式子表示);

3)是否存在一個(gè)圖形恰好由111個(gè)菱形組成?若存在,求出圖的序號(hào);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線 為常數(shù))經(jīng)過(guò)點(diǎn) ,與 軸相 交于點(diǎn) 、(點(diǎn) 在點(diǎn) 的右側(cè)).

1)求拋物線的解析式和點(diǎn) 的坐標(biāo);

2)將直線 向下平移 )個(gè)單位長(zhǎng)度后,得到的直線與拋物線只有一個(gè)公共點(diǎn) ,求點(diǎn) 的坐標(biāo);

3)在(2)的條件下,連接 ,在 正半軸上是否存在點(diǎn) ,使以 、、 為頂點(diǎn)的三角形與 相似.若存在,請(qǐng)求出點(diǎn) 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃經(jīng)銷一些特產(chǎn),經(jīng)銷前,圍繞“A:王高虎頭雞,B:羊口咸蟹子,C:桂河芹菜,D:巨淀湖咸鴨蛋”四種特產(chǎn),在全市范圍內(nèi)隨機(jī)抽取了部分市民進(jìn)行問(wèn)卷調(diào)查:“我最喜歡的特產(chǎn)是什么?”(必選且只選一種).現(xiàn)將調(diào)查結(jié)果整理后,繪制成如圖所示的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.

(1)請(qǐng)補(bǔ)全扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖;

(2)若全市有110萬(wàn)市民,估計(jì)全市最喜歡“羊口咸蟹子”的市民約有多少萬(wàn)人?

(3)在一個(gè)不透明的口袋中有四個(gè)分別寫(xiě)上四種特產(chǎn)標(biāo)記A、B、C、D的小球(除標(biāo)記外完全相同),隨機(jī)摸出一個(gè)小球然后放回,混合搖勻后,再隨機(jī)摸出一個(gè)小球,則兩次都摸到A的概率是多少?寫(xiě)出分析計(jì)算過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正n邊形的周長(zhǎng)為60,邊長(zhǎng)為a

(1)當(dāng)n=3時(shí),請(qǐng)直接寫(xiě)出a的值;

(2)把正n邊形的周長(zhǎng)與邊數(shù)同時(shí)增加7后,假設(shè)得到的仍是正多邊形,它的邊數(shù)為n+7,周長(zhǎng)為67,邊長(zhǎng)為b.有人分別取n等于3,20,120,再求出相應(yīng)的ab,然后斷言:“無(wú)論n取任何大于2的正整數(shù),ab一定不相等.”你認(rèn)為這種說(shuō)法對(duì)嗎?若不對(duì),請(qǐng)求出不符合這一說(shuō)法的n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)坐標(biāo)為,軸正半軸上一動(dòng)點(diǎn),則度數(shù)為_________,在點(diǎn)運(yùn)動(dòng)的過(guò)程中的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,六邊形ABCDEF的內(nèi)角都相等, ,則下列結(jié)論成立的個(gè)數(shù)是

; ; 四邊形ACDF是平行四邊形; 六邊形ABCDEF既是中心對(duì)稱圖形,又是軸對(duì)稱圖形.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,COAB邊上的中線,∠AOC60°,AB2,點(diǎn)P是直線OC上的一個(gè)動(dòng)點(diǎn),則當(dāng)△PAB為直角三角形時(shí),邊AP的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案