【題目】在△ABC中,CO是AB邊上的中線,∠AOC=60°,AB=2,點P是直線OC上的一個動點,則當△PAB為直角三角形時,邊AP的長為_____.
【答案】或或1
【解析】
當∠ABP=90°時,如圖2,易得∠BOP=60°,進而可利用三角函數(shù)求出BP的長,再根據勾股定理即可求出AP的長;當∠APB=90°時,分兩種情況討論:①如圖1,點P在CO的延長線上時,利用直角三角形的性質可得PO=BO,進而可得△BOP為等邊三角形,然后利用銳角三角函數(shù)可得AP的長;②如圖3,點P在CO上時,易證△AOP為等邊三角形,再利用等邊三角形的性質可得結論.
解:如圖1,當∠APB=90°,點P在CO的延長線上時,
∵AO=BO,∴PO=BO,
∵∠AOC=60°,∴∠BOP=60°,
∴△BOP為等邊三角形,
∴∠ABP=60°,
∵AB=2,
∴AP=ABsin60°=2×;
如圖2,當∠ABP=90°時,
∵∠AOC=∠BOP=60°,
∴BP=,
在直角△ABP中,由勾股定理,得AP=;
如圖3,當∠APB=90°時,點P在CO上時,
∵AO=BO,∠APB=90°,
∴PO=AO,
∵∠AOC=60°,
∴△AOP為等邊三角形,
∴AP=AO=1;
綜上,AP=或或1.
故答案為:或或1.
科目:初中數(shù)學 來源: 題型:
【題目】 在平面直角坐標系中,有兩條拋物線關于x軸對稱,且它們的頂點相距6個單位長度,若其中一條拋物線的函數(shù)表達式為y=﹣x2+4x+2m,則m的值是( 。
A.B.C.1D.或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD,CD,過點D作PD∥BC與AB的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:BD2=PBAC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學活動小組在一次活動中,對一個數(shù)學問題做了如下研究:
(問題發(fā)現(xiàn))(1)如圖①,在等邊三角形ABC中,點M是BC邊上任意一點,連接AM,以AM為邊作等邊三角形AMN,連接CN,則∠ABC和∠ACN的數(shù)量關系為 ;
(變式探究)(2)如圖②,在等腰三角形ABC中,AB=BC,點M是BC邊上任意一點(不含端點B,C,連接AM,以AM為邊作等腰三角形AMN,使∠AMN=∠ABC,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關系,并說明理由;
(解決問題)(3)如圖③,在正方形ADBC中,點M為BC邊上一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中心,連接CN,AB,AE,若正方形ADBC的邊長為8,CN=,直接寫出正方形AMEF的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了開展“陽光體育運動”,計劃購買籃球、足球共60個,已知每個籃球的價格為70元,每個足球的價格為80元.
(1)若購買這兩類球的總金額為4600元,求籃球、足球各買了多少個?
(2)若購買籃球的總金額不超過購買足球的總金額,求最多可購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等邊三角形,點D為平面內一點,連接DB、DC,∠BDC=120°.
(1)如圖①,當點D在BC下方時,連接AD,延長DC到點E,使CE=BD,連接AE.
①求證:△ABD≌△ACE;
②如圖②,過點A作AF⊥DE于點F,直接寫出線段AF、BD、DC間的數(shù)量關系;
(2)若AB=2,DC=6,直接寫出點A到直線BD的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列分式方程解應用題:
“5G改變世界,5G創(chuàng)造未來”.2019年9月,全球首個5G上海虹橋火車站,完成了5G網絡深度覆蓋,旅客可享受到高速便捷的5G網絡服務.虹橋火車站中5G網絡峰值速率為4G網絡峰值速率的10倍.在峰值速率下傳輸7千兆數(shù)據,5G網絡比4G網絡快630秒,求5G網絡的峰值速率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新冠疫情初期,醫(yī)用口罩是緊缺物資.某市為降低因購買口罩造成人群聚集的感染風險,通過APP實名預約,以搖號抽簽的方式,由市民到指定門店購買口罩.規(guī)定:已中簽者在本輪搖號結束前不再參與搖號;若指定門店當日市民購買口罩的平均等待時間超過8分鐘,則次日必須增派工作人員.
(1)據APP數(shù)據統(tǒng)計:第一天有386.5萬人進行網上預約,此后每天預約新增4萬人,且每天有35.5萬人中簽,若小明第一天沒有中簽,則他第二天中簽的概率是多少?
(2)該市某區(qū)指定A,B兩門店每天8:00-22:00時段讓中簽市民排隊購買口罩.圖1是A門店某日購買口罩的人數(shù)與等待時間的統(tǒng)計圖,為了算出A門店某日等待9分鐘的人數(shù),小紅選擇14:00~16:00這個時間段到店進行統(tǒng)計,統(tǒng)計結果見表1,且這個時間段的人數(shù)占該店當天等待9分鐘人數(shù)的.表2是B門店某日購買口罩的人數(shù)與等待時間的統(tǒng)計表.請你運用所學的統(tǒng)計知識判斷A,B門店次日是否需要增派工作人員.
表1
時間段 | 等待9分鐘/人 |
14:00~14:30 | 10 |
14:30~15:00 | 20 |
15:00~15:30 | 15 |
15:30~16:00 | 5 |
表2
等待時間 | ||||
人數(shù)/人 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了防范疫情,順利復學,某市教育局決定從甲、乙兩地用汽車向兩校運送口罩,甲、乙兩地分別可提供口罩40萬個,10萬個,兩校分別需要口罩30萬個,20萬個,兩地到兩校的路程如表(每萬個口罩每千米運費2元),設甲地運往A校x萬個口罩.
路程 | 路程 | |
甲地 | 乙地 | |
A校 | 10 | 20 |
B校 | 15 | 15 |
(1)根據題意,在答題卡中填寫下表:
(2)設總運費為元,求與的函數(shù)關系式,當甲地運往A校多少萬個口罩時,總運費最少?最少的運費是多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com