【題目】某學(xué)校為了解學(xué)生課外閱讀的情況,對學(xué)生“平均每天課外閱讀的時間”進行了隨機抽樣調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)平均每天課外閱讀的時間為“0.5~1小時”部分的扇形圖的圓心角為多少度;
(2)本次一共調(diào)查了多少名學(xué)生;
(3)將條形圖補充完整;
(4)若該校有1680名學(xué)生,請估計該校有多少名學(xué)生平均每天課外閱讀的時間在0.5小時以下.
【答案】(1)54;(2)200;(3)見解析;(4)84人.
【解析】(1)時間為“0.5~1小時”部分的扇形圖的圓心角為:15%×360°;
(2)調(diào)查的總?cè)藬?shù)是:100÷50%;
(3)根據(jù)各組頻數(shù)畫統(tǒng)計圖;
(4)用樣本估計總體:在0.5小時以下的人數(shù):1680×5%.
(1)解:每天課外閱讀的時間為“0.5~1小時”的學(xué)生所占的比例是:1﹣50%﹣30%﹣5%=15%, 則時間為“0.5~1小時”部分的扇形圖的圓心角為:15%×360°=54°,
故答案是:54;
(2)解:調(diào)查的總?cè)藬?shù)是:100÷50%=200, 故答案是:200;
(3)解:
(4)解:在0.5小時以下的人數(shù):1680×5%=84(人)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標一工程隊負責(zé)在山腳下修建一座水庫的土方施工任務(wù).該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.
(1)分別求每臺型, 型挖掘機一小時挖土多少立方米?
(2)若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費用最低,最低費用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(如圖(1),在矩形ABCD中,AB=4,BC=3,點E是射線CD上的一個動點,把△BCE沿BE折疊,點C的對應(yīng)點為F.
(1)若點F剛好落在線段AD的垂直平分線上時,求線段CE的長;
(2)若點F剛好落在線段AB的垂直平分線上時,求線段CE的長;
(3)當(dāng)射線AF交線段CD于點G時,請直接寫出CG的最大值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC 中,AB=AC,過其中一個頂點的直線可以把這個三角形分成另外兩個等腰三角形,則∠BAC( )
A. 36°,90°,, 108°B. 36°,72°,,90°
C. 90°,72°,108°,D. 36°,90°,108°,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點D,E,過點D作DF⊥AC,垂足為F,線段FD,AB的延長線相交于點G.
(1)求證:DF是⊙O的切線;
(2)若CF=1,DF=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每一幅圖中都有若干個大小不同的四邊形,第1幅圖中有1個四邊形,第2幅圖中有3個四邊形,第3幅圖中有5個四邊形
(1)第4幅圖中有 個四邊形,第5幅圖中有 個四邊形;
(2)根據(jù)第1幅圖到第5幅圖的規(guī)律,推測第幅圖中有 個四邊形;(用含字母的代數(shù)式表示)
(3)根據(jù)(2)的推測,請你計算第幅圖中四邊形的個數(shù)比第幅圖中四邊形個數(shù)多幾個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A=2x2+3xy5x+1,B=x2+xy+2
(1)求A+2B.
(2)若A+2B的值與x的值無關(guān),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的高,BE為△ABC的角平分線,若∠EBA=32°,∠AEB=70°.
(1)求∠CAD的度數(shù);
(2)若點F為線段BC上任意一點,當(dāng)△EFC為直角三角形時,則∠BEF的度數(shù)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店決定購進A、B兩種紀念品.若購進A種紀念品10件,B種紀念品5件,需要1000元;若購進A種紀念品5件,B種紀念品3件,需要550元.
(1)求購進A、B兩種紀念品每件各需多少元?
(2)若該商店決定拿出1萬元全部用來購進這兩種紀念品,考慮到市場需求,要求購進A種紀念品的數(shù)量不少于B種紀念品數(shù)量的6倍,且不超過B種紀念品數(shù)量的8倍,那么該商店共有幾種進貨方案?
(3)若銷售每件A種紀念品可獲利潤20元,每件B 種紀念品可獲利潤30元,在(2)的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com