【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中點為圓心,OA的長為半徑作半圓交AC于點D,則圖中陰影部分的面積為( )

A.B.C.D.

【答案】A

【解析】

連接OD,過點OOHAC,垂足為 H,則有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,繼而可求得OHAH長,根據(jù)圓周角定理可求得∠BOC =60°,然后根據(jù)S陰影=SABC-SAOD-S扇形BOD進行計算即可.

連接OD,過點OOHAC,垂足為 H,

則有AD=2AH,∠AHO=90°,

Rt△ABC中,∠ABC=90°,AB=,BC=2,tanA=

∠A=30°,

OH=OA=,AH=AOcosA=∠BOC=2∠A=60°,

∴AD=2AH=,

S陰影=SABC-SAOD-S扇形BOD==,

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是半徑為4的內(nèi)接三角形,連接,點分別是的中點.

1)試判斷四邊形的形狀,并說明理由;

2)填空:①若,當時,四邊形的面積是__________;②若,當的度數(shù)為__________時,四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點EAD邊上一點,AEED12,連接ACBE交于點F.SAEF1,則S四邊形CDEF_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的邊長為5,EBC邊上運動,DE的中點G,EGE順時針旋轉(zhuǎn)90°EF,問CE為多少時A、C、F在一條直線上(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC(AC<AB<BC),請用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡):

(1)在邊BC上確定一點P,使得PA+PC=BC;

(2)作出一個△DEF,使得:①△DEF是直角三角形;②△DEF的周長等于邊BC的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校團委為了教育學生,開展了以感恩為主題的有獎征文活動,并為獲獎的同學頒發(fā)獎品.小紅與小明去文化商店購買甲、乙兩種筆記本作為獎品,若買甲種筆記本20個,乙種筆記本10個,共用110元;且買甲種筆記本30個比買乙種筆記本20個少花10元.

(1)求甲、乙兩種筆記本的單價各是多少元?

(2)若本次購進甲種筆記本的數(shù)量比乙種筆記本的數(shù)量的2倍還少10個,且購進兩種筆記本的總數(shù)量不少于80本,總金額不超過320元.請你設計出本次購進甲、乙兩種筆記本的所有方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠CAB90°,ABAC,點Ay軸上,BCx軸,點B.將△ABC繞點A順時針旋轉(zhuǎn)的△ABC′,當點B′落在x軸的正半軸上時,點C′的坐標為(  )

A.(﹣,1B.(﹣,1

C.(﹣,+1D.(﹣,1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線y=axa為拋物線y=ax2+bx+ca、b、c為常數(shù),a≠0)的夢想直線;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其夢想三角形

已知拋物線與其夢想直線交于AB兩點(點A在點B的左側(cè)),與x軸負半軸交于點C

1)填空:該拋物線的夢想直線的解析式為

2)如圖,點M為線段CB上一動點,將ACMAM所在直線為對稱軸翻折,點C的對稱點為N,若AMN為該拋物線的夢想三角形,求點N的坐標;

3)當點E在拋物線的對稱軸上運動時,在該拋物線的夢想直線上,是否存在點F,使得以點AC、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點EF的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E,F分別在邊AD,DC上,AB=6,DF4,將矩形沿直線EF折疊,點D恰好落在BC邊上的點G處,連接DGEF于點H.

(1)DE的長度.

(2)的值.

(3)AB邊上有且只存在2個點P,使△APE與△BPG相似,請直接寫出邊AD的值.

查看答案和解析>>

同步練習冊答案